版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖北省孝感市部分重點(diǎn)學(xué)校2024年高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知m為實(shí)數(shù),直線:,:,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件2.雙曲線:(,)的一個(gè)焦點(diǎn)為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.3.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)是()A. B. C. D.4.?dāng)?shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實(shí)數(shù)λ的最大值為()A. B. C. D.5.如圖所示,在平面直角坐標(biāo)系中,是橢圓的右焦點(diǎn),直線與橢圓交于,兩點(diǎn),且,則該橢圓的離心率是()A. B. C. D.6.二項(xiàng)式的展開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中的常數(shù)項(xiàng)是()A.180 B.90 C.45 D.3607.已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四個(gè)面中,最大面積為()A. B. C. D.8.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.9.已知等差數(shù)列的前n項(xiàng)和為,且,,若(,且),則i的取值集合是()A. B. C. D.10.若變量,滿足,則的最大值為()A.3 B.2 C. D.1011.將函數(shù)圖象向右平移個(gè)單位長度后,得到函數(shù)的圖象關(guān)于直線對稱,則函數(shù)在上的值域是()A. B. C. D.12.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____。14.《九章算術(shù)》是中國古代的數(shù)學(xué)名著,其中《方田》一章給出了弧田面積的計(jì)算公式.如圖所示,弧田是由圓弧AB和其所對弦AB圍成的圖形,若弧田的弧AB長為4π,弧所在的圓的半徑為6,則弧田的弦AB長是__________,弧田的面積是__________.15.根據(jù)記載,最早發(fā)現(xiàn)勾股定理的人應(yīng)是我國西周時(shí)期的數(shù)學(xué)家商高,商高曾經(jīng)和周公討論過“勾3股4弦5”的問題.現(xiàn)有滿足“勾3股4弦5”,其中“股”,為“弦”上一點(diǎn)(不含端點(diǎn)),且滿足勾股定理,則______.16.過動點(diǎn)作圓:的切線,其中為切點(diǎn),若(為坐標(biāo)原點(diǎn)),則的最小值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線與總存在公切線.18.(12分)試求曲線y=sinx在矩陣MN變換下的函數(shù)解析式,其中M,N.19.(12分)已知函數(shù)()在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).(1)求實(shí)數(shù)的取值范圍;(2)若有兩個(gè)不同的極值點(diǎn),,且,若不等式恒成立.求正實(shí)數(shù)的取值范圍.20.(12分)已知函數(shù),函數(shù)().(1)討論的單調(diào)性;(2)證明:當(dāng)時(shí),.(3)證明:當(dāng)時(shí),.21.(12分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點(diǎn).(1)證明:平面(2)若,求二面角的余弦值.22.(10分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)直線平行的等價(jià)條件,求出m的值,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】當(dāng)m=1時(shí),兩直線方程分別為直線l1:x+y﹣1=0,l2:x+y﹣2=0滿足l1∥l2,即充分性成立,當(dāng)m=0時(shí),兩直線方程分別為y﹣1=0,和﹣2x﹣2=0,不滿足條件.當(dāng)m≠0時(shí),則l1∥l2?,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,則m=1,即“m=1”是“l(fā)1∥l2”的充要條件,故答案為:A【點(diǎn)睛】(1)本題主要考查充要條件的判斷,考查兩直線平行的等價(jià)條件,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)本題也可以利用下面的結(jié)論解答,直線和直線平行,則且兩直線不重合,求出參數(shù)的值后要代入檢驗(yàn)看兩直線是否重合.2、A【解析】
根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點(diǎn)到漸近線的距離為,故,故漸近線為.故選:.【點(diǎn)睛】本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.3、A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)是.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.4、D【解析】
利用等差數(shù)列通項(xiàng)公式推導(dǎo)出λ,由d∈[1,2],能求出實(shí)數(shù)λ取最大值.【詳解】∵數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數(shù),∴d=1時(shí),實(shí)數(shù)λ取最大值為λ.故選D.【點(diǎn)睛】本題考查實(shí)數(shù)值的最大值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.5、A【解析】
聯(lián)立直線方程與橢圓方程,解得和的坐標(biāo),然后利用向量垂直的坐標(biāo)表示可得,由離心率定義可得結(jié)果.【詳解】由,得,所以,.由題意知,所以,.因?yàn)?所以,所以.所以,所以,故選:A.【點(diǎn)睛】本題考查了直線與橢圓的交點(diǎn),考查了向量垂直的坐標(biāo)表示,考查了橢圓的離心率公式,屬于基礎(chǔ)題.6、A【解析】試題分析:因?yàn)榈恼归_式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以,,令,則,.考點(diǎn):1.二項(xiàng)式定理;2.組合數(shù)的計(jì)算.7、B【解析】
由三視圖可知,該三棱錐如圖,其中底面是等腰直角三角形,平面,結(jié)合三視圖求出每個(gè)面的面積即可.【詳解】由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因?yàn)?,所以,所以,因?yàn)闉榈冗吶切?,所?所以該三棱錐的四個(gè)面中,最大面積為.故選:B【點(diǎn)睛】本題考查三視圖還原幾何體并求其面積;考查空間想象能力和運(yùn)算求解能力;三視圖正確還原幾何體是求解本題的關(guān)鍵;屬于中檔題、常考題型.8、C【解析】
求出導(dǎo)函數(shù),由有不等的兩實(shí)根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.9、C【解析】
首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.10、D【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【點(diǎn)睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,屬于中檔題.11、D【解析】
由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,求得結(jié)果.【詳解】解:把函數(shù)圖象向右平移個(gè)單位長度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關(guān)于直線對稱,,,,函數(shù).在上,,,故,即的值域是,故選:D.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,屬于中檔題.12、D【解析】
畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標(biāo)函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標(biāo)函數(shù)為直線方程的斜截式,.由圖可知當(dāng)直線過時(shí),直線在軸上的截距最大,有最大值為3.故選:D.【點(diǎn)睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標(biāo)函數(shù)轉(zhuǎn)化為的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標(biāo)函數(shù)即可求出最值.注意畫可行域時(shí),邊界線的虛實(shí)問題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知求,再利用和角正切公式,求得,【詳解】因?yàn)樗詂os因此.【點(diǎn)睛】本題考查了同角三角函數(shù)基本關(guān)系式與和角的正切公式。14、612π﹣9【解析】
過作,交于,先求得圓心角的弧度數(shù),然后解解三角形求得的長.利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】∵如圖,弧田的弧AB長為4π,弧所在的圓的半徑為6,過作,交于,根據(jù)圓的幾何性質(zhì)可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面積S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案為:6,12π﹣9.【點(diǎn)睛】本小題主要考查弓形弦長和弓形面積的計(jì)算,考查中國古代數(shù)學(xué)文化,屬于中檔題.15、【解析】
先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,,所以.故答案為:【點(diǎn)睛】本題考查向量的數(shù)量積,重點(diǎn)考查向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.16、【解析】解答:由圓的方程可得圓心C的坐標(biāo)為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點(diǎn)到原點(diǎn)距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點(diǎn)到直線的距離公式得:MN的最小值為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(1)求出導(dǎo)數(shù),問題轉(zhuǎn)化為在上恒成立,利用導(dǎo)數(shù)求出的最小值即可求解;(2)分別設(shè)切點(diǎn)橫坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義寫出切線方程,問題轉(zhuǎn)化為證明兩直線重合,只需滿足有解即可,利用函數(shù)的導(dǎo)數(shù)及零點(diǎn)存在性定理即可證明存在.【詳解】(1),函數(shù)在上單調(diào)遞增等價(jià)于在上恒成立.令,得,所以在單調(diào)遞減,在單調(diào)遞增,則.因?yàn)?,則在上恒成立等價(jià)于在上恒成立;又,所以,即.(2)設(shè)的切點(diǎn)橫坐標(biāo)為,則切線方程為……①設(shè)的切點(diǎn)橫坐標(biāo)為,則,切線方程為……②若存在,使①②成為同一條直線,則曲線與存在公切線,由①②得消去得即令,則所以,函數(shù)在區(qū)間上單調(diào)遞增,,使得時(shí)總有又時(shí),在上總有解綜上,函數(shù)與總存在公切線.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的恒成立問題,導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)證明方程有解,屬于難題.18、y=2sin2x.【解析】
計(jì)算MN,計(jì)算得到函數(shù)表達(dá)式.【詳解】∵M(jìn),N,∴MN,∴在矩陣MN變換下,→∴曲線y=sinx在矩陣MN變換下的函數(shù)解析式為y=2sin2x.【點(diǎn)睛】本題考查了矩陣變換,意在考查學(xué)生的計(jì)算能力.19、(1);(2).【解析】
(1)求導(dǎo)得到有兩個(gè)不相等實(shí)根,令,計(jì)算函數(shù)單調(diào)區(qū)間得到值域,得到答案.(2),是方程的兩根,故,化簡得到,設(shè)函數(shù),討論范圍,計(jì)算最值得到答案.【詳解】(1)由題可知有兩個(gè)不相等的實(shí)根,即:有兩個(gè)不相等實(shí)根,令,,,,;,,故在上單增,在上單減,∴.又,時(shí),;時(shí),,∴,即.(2)由(1)知,,是方程的兩根,∴,則因?yàn)樵趩螠p,∴,又,∴即,兩邊取對數(shù),并整理得:對恒成立,設(shè),,,當(dāng)時(shí),對恒成立,∴在上單增,故恒成立,符合題意;當(dāng)時(shí),,時(shí),∴在上單減,,不符合題意.綜上,.【點(diǎn)睛】本題考查了根據(jù)極值點(diǎn)求參數(shù),恒成立問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析【解析】
(1)求出的定義域,導(dǎo)函數(shù),對參數(shù)、分類討論得到答案.(2)設(shè)函數(shù),求導(dǎo)說明函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得證.(3)由(1)可知,可得,即又即可得證.【詳解】(1)解:的定義域?yàn)?,,?dāng),時(shí),,則在上單調(diào)遞增;當(dāng),時(shí),令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增;當(dāng),時(shí),,則在上單調(diào)遞減;當(dāng),時(shí),令,得,令,得,則在上單調(diào)遞增,在上單調(diào)遞減;(2)證明:設(shè)函數(shù),則.因?yàn)?,所以,,則,從而在上單調(diào)遞減,所以,即.(3)證明:當(dāng)時(shí),.由(1)知,,所以,即.當(dāng)時(shí),,,則,即,又,所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中小學(xué)教師晉級職稱考試試題(附含答案)
- 高溫高壓清洗的環(huán)保效益-洞察及研究
- 金融科技對跨境支付市場的影響研究-洞察及研究
- 量子態(tài)解碼技術(shù)-洞察及研究
- 2026年市場營銷專員面試準(zhǔn)備指南及答案
- 2026年IT行業(yè)注冊技術(shù)專家考試技巧
- 2026年客戶經(jīng)理績效考核及獎勵機(jī)制
- 2026年IT技術(shù)支持工程師助理的面試題
- 2026年石油化工環(huán)保治理項(xiàng)目專責(zé)面試題庫
- 基因編輯技術(shù)在傳染病防控中的潛在作用-洞察及研究
- 江蘇省高級人民法院勞動爭議案件審理指南
- 夾套管施工方案
- 地面人工開挖施工方案
- 物業(yè)房屋中介合作協(xié)議
- 眼科常見疾病診療規(guī)范診療指南2022版
- 新郎父親在婚禮上的精彩講話稿范文(10篇)
- (山東)通風(fēng)與空調(diào)工程施工資料表格大全(魯TK001-057)
- 大鵬新區(qū)保護(hù)與發(fā)展綜合規(guī)劃(2013-2020)
- 戰(zhàn)略成本1-6章toc經(jīng)典案例
- DB37-T 5026-2022《居住建筑節(jié)能設(shè)計(jì)標(biāo)準(zhǔn)》
- 虛擬電廠(共30張PPT)
評論
0/150
提交評論