大學(xué)物理第六章課后習(xí)題答案馬文蔚第五版_第1頁
大學(xué)物理第六章課后習(xí)題答案馬文蔚第五版_第2頁
大學(xué)物理第六章課后習(xí)題答案馬文蔚第五版_第3頁
大學(xué)物理第六章課后習(xí)題答案馬文蔚第五版_第4頁
大學(xué)物理第六章課后習(xí)題答案馬文蔚第五版_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第六章靜電場中的導(dǎo)體與電介質(zhì)

6-1將一個(gè)帶正電的帶電體A從遠(yuǎn)處移到一個(gè)不帶電的導(dǎo)體B附近,則導(dǎo)體B的電勢將()

(A)升高(B)降低(C)不會發(fā)生變化(D)無法確定

分析與解不帶電的導(dǎo)體B相對無窮遠(yuǎn)處為零電勢。由于帶正電的帶電體A移到不帶電的導(dǎo)體B附近時(shí),在

導(dǎo)體B的近端感應(yīng)負(fù)電荷;在遠(yuǎn)端感應(yīng)正電荷,不帶電導(dǎo)體的電勢將高于無窮遠(yuǎn)處,因而正確答案為(A)。

6-2將一帶負(fù)電的物體M靠近一不帶電的導(dǎo)體N,在N的左端感應(yīng)出正電荷,右端感應(yīng)出負(fù)電荷。若將導(dǎo)

體N的左端接地(如圖所示),則()

(A)N上的負(fù)電荷入地(B)N上的正電荷入地

(C)N上的所有電荷入地(D)N上所有的感應(yīng)電荷入地

分析與解導(dǎo)體N接地表明導(dǎo)體N為零電勢,即與無窮遠(yuǎn)處等電勢,這與導(dǎo)體N在哪一端接地?zé)o關(guān)。因而正

確答案為(A)。

6-3如圖所示將一個(gè)電量為g的點(diǎn)電荷放在一個(gè)半徑為R的不帶電的導(dǎo)體球附近,點(diǎn)電荷距導(dǎo)體球球心為

d,參見附圖。設(shè)無窮遠(yuǎn)處為零電勢,則在導(dǎo)體球球心。點(diǎn)有()

(A)E=O,V=—^—

(B)E=-,V=^—

4K£0J4ns0d

(C)E=O,V=O

分析與解達(dá)到靜電平衡時(shí)導(dǎo)體內(nèi)處處各點(diǎn)電場強(qiáng)度為零。點(diǎn)電荷q在導(dǎo)

體球表面感應(yīng)等量異號的感應(yīng)電荷±/,導(dǎo)體球表面的感應(yīng)電荷在球心。點(diǎn)激發(fā)的電勢為零,。點(diǎn)的電勢

等于點(diǎn)電荷g在該處激發(fā)的電勢。因而正確答案為(A)。

6-4根據(jù)電介質(zhì)中的高斯定理,在電介質(zhì)中電位移矢量沿任意一個(gè)閉合曲面的積分等于這個(gè)曲面所包圍自

由電荷的代數(shù)和。下列推論正確的是()

(A)若電位移矢量沿任意一個(gè)閉合曲面的積分等于零,曲面內(nèi)一定沒有自由電荷

(B)若電位移矢量沿任意一個(gè)閉合曲面的積分等于零,曲面內(nèi)電荷的代數(shù)和一定等于零

(C)若電位移矢量沿任意一個(gè)閉合曲面的積分不等于零,曲面內(nèi)一定有極化電荷

(D)介質(zhì)中的高斯定律表明電位移矢量僅僅與自由電荷的分布有關(guān)

(E)介質(zhì)中的電位移矢量與自由電荷和極化電荷的分布有關(guān)

分析與解電位移矢量沿任意一個(gè)閉合曲面的通量積分等于零,表明曲面

內(nèi)自由電荷的代數(shù)和等于零;由于電介質(zhì)會改變自由電荷的空間分布,介質(zhì)中的電位移矢量與自由電荷與位

移電荷的分布有關(guān)。因而正確答案為(E)。

6-5對于各向同性的均勻電介質(zhì),下列概念正確的是()

(A)電介質(zhì)充滿整個(gè)電場并且自由電荷的分布不發(fā)生變化時(shí),電介質(zhì)中的電場強(qiáng)度一定等于沒有電介質(zhì)時(shí)該

點(diǎn)電場強(qiáng)度的l/e,倍

(B)電介質(zhì)中的電場強(qiáng)度一定等于沒有介質(zhì)時(shí)該點(diǎn)電場強(qiáng)度的l/e,倍

(C)在電介質(zhì)充滿整個(gè)電場時(shí),電介質(zhì)中的電場強(qiáng)度一定等于沒有電介質(zhì)時(shí)該點(diǎn)電場強(qiáng)度的1/置倍

(D)電介質(zhì)中的電場強(qiáng)度一定等于沒有介質(zhì)時(shí)該點(diǎn)電場強(qiáng)度的前倍

分析與解電介質(zhì)中的電場由自由電荷激發(fā)的電場與極化電荷激發(fā)的電場迭加而成,由于極化電荷可能會改

變電場中導(dǎo)體表面自由電荷的分布,由電介質(zhì)中的高斯定理,僅當(dāng)電介質(zhì)充滿整個(gè)電場并且自由電荷的分布

不發(fā)生變化時(shí),在電介質(zhì)中任意高斯面S有

即E=E?/e,,因而正確答案為(A)。

6-6不帶電的導(dǎo)體球A含有兩個(gè)球形空腔,兩空腔中心分別有一點(diǎn)電荷仇、伏,導(dǎo)體球外距導(dǎo)體球較遠(yuǎn)

的r處還有一個(gè)點(diǎn)電荷4d(如圖所示)。試求點(diǎn)電荷仇、今、見各受多大的電場力。

分析與解根據(jù)導(dǎo)體靜電平衡時(shí)電荷分布的規(guī)律,空腔內(nèi)點(diǎn)電荷的電場線終止于空腔內(nèi)表面感應(yīng)電荷;導(dǎo)體

球A外表面的感應(yīng)電荷近似均勻分布,因而近似可看作均勻帶電球?qū)c(diǎn)電荷處的作用力。

點(diǎn)電荷.與導(dǎo)體球A外表面感應(yīng)電荷在球形空腔內(nèi)激發(fā)的電場為零,點(diǎn)電

荷仇、仇處于球形空腔的中心,空腔內(nèi)表面感應(yīng)電荷均勻分布,點(diǎn)電荷佻、會受到的作用力為零.

6-7一真空二極管,其主要構(gòu)件是一個(gè)半徑處=5.0X10'm的圓柱形陰極和一個(gè)套在陰極外,半徑七

=4.5X10、的同軸圓簡形陽極.陽極電勢比陰極電勢高300V,陰極與陽極的長度均為L=2.5X102

m.假設(shè)電子從陰極射出時(shí)的速度為零.求:(1)該電子到達(dá)陽極時(shí)所具有的動(dòng)能和速率;(2)電子剛

從陽極射出時(shí)所受的力.

分析(1)由于半徑治<<L因此可將電極視作無限長圓柱面,陰極和陽極之間的電場具有軸對稱性.從

陰極射出的電子在電場力作用下從靜止開始加速,電子所獲得的動(dòng)能等于電場力所作的功,也即等于電子勢

能的減少.由此,可求得電子到達(dá)陽極時(shí)的動(dòng)能和速率.

(2)計(jì)算陽極表面附近的電場強(qiáng)度,由F=qE求出電子在陰極表面所受的電場力.

解(1)電子到達(dá)陽極時(shí),勢能的減少量為

由于電子的初始速度為零,故

因此電子到達(dá)陽極的速率為

(2)兩極間的電場強(qiáng)度為

兩極間的電勢差

負(fù)號表示陽極電勢高于陰極電勢.陰極表面電場強(qiáng)度

電子在陰極表面受力

這個(gè)力盡管很小,但作用在質(zhì)量為9.11xlO^'kg的電子上,電子獲得的加速度可達(dá)重力加速度的5X10,5

倍.

6-8一導(dǎo)體球半徑為R,,外罩一半徑為旦的同心薄導(dǎo)體球殼,外球殼所帶總電荷為0,而內(nèi)球的電勢為

Vo.求此系統(tǒng)的電勢和電場的分布.

分析若析=0,內(nèi)球電勢等于外球殼的電勢,則外球殼內(nèi)必定為等勢體,電場強(qiáng)度處處為零,內(nèi)球

4%/?2

不帶電.

若%#0,內(nèi)球電勢不等于外球殼電勢,則外球殼內(nèi)電場強(qiáng)度不為零,內(nèi)球帶電.一般情況下,

假設(shè)內(nèi)導(dǎo)體球帶電q,導(dǎo)體達(dá)到靜電平衡時(shí)電荷的分布如圖所示.依照電荷的這一分布,利用高斯定理可求得

電場分布.并由匕=或電勢疊加求出電勢的分布.最后將電場強(qiáng)度和電勢用已知量方、Q、R,、R?

表示.

解根據(jù)靜電平衡時(shí)電荷的分布,可知電場分布呈球?qū)ΨQ.取同心球面為高斯面,由高斯定理

fE?dS=E(r)-4nr2=E(r)£q/%,根據(jù)不同半徑的高斯面內(nèi)的電荷分布,解得各區(qū)域內(nèi)的電場分布

r時(shí),Ex(r)=0

R—時(shí),E、(r)=-J

~4兀生廣

,>凡時(shí),&(「)=棄4

4ns0r

由電場強(qiáng)度與電勢的積分關(guān)系,可得各相應(yīng)區(qū)域內(nèi)的電勢分布.

r〈宿時(shí),

Ri<r<R2時(shí),

r>R:時(shí),

也可以從球面電勢的疊加求電勢的分布.在導(dǎo)體球內(nèi)(rVRi)

在導(dǎo)體球和球殼之間(R,<r<R:)

在球殼外(r>R)

由題意

代入電場、電勢的分布得

r<凡時(shí),

g=0;匕=匕

RVrVR時(shí),

E=R斗&Q(-RJQ

22

r'4nE0R2rr47r£()R2r

r>R:時(shí),

RM(&-4)。RM⑻-a)。

匕3----J-------------------2~;------------------

V4兀%7?2rr4ne0R2r

6—9在一半徑為Ri=6.0cm的金屬球A外面套有一個(gè)同心的金屬球殼B.已知球殼B的內(nèi)、外半徑分別

為R=8.0cm,R,=10.0cm.設(shè)球A帶有總電荷QA=3.0X10SC,球殼B帶有總電荷QB=2.0X10^

C.(1)求球殼B內(nèi)、外表面上所帶的電荷以及球A和球殼B的電勢;(2)將球殼B接地然后斷開,再

把金屬球A接地,求金屬球A和球殼B內(nèi)、外表面上所帶的電荷以及球A和球殼B的電勢.

分析(1)根據(jù)靜電感應(yīng)和靜電平衡時(shí)導(dǎo)體表面電荷分布的規(guī)律,電荷QA均勻分布在球A表面,球殼B內(nèi)

表面帶電荷一QA,外表面帶電荷QB+QA,電荷在導(dǎo)體表面均勻分布[圖(a)],由帶電球面電勢的疊加

可求得球A和球殼B的電勢.(2)導(dǎo)體接地,表明導(dǎo)體與大地等電勢(大地電勢通常取為零).球殼B接

地后,外表面的電荷與從大地流入的負(fù)電荷中和,球殼內(nèi)表面帶電一QA[圖(b)].斷開球殼B的接地后,

再將球A接地,此時(shí)球A的電勢為零.電勢的變化必將引起電荷的重新分布,以保持導(dǎo)體的靜電平衡.不失

一般性可設(shè)此時(shí)球A帶電外,根據(jù)靜電平衡時(shí)導(dǎo)體上電荷的分布規(guī)律,可知球殼B內(nèi)表面感應(yīng)一心,外表

面帶電<YA—2A[圖(c)].此時(shí)球A的電勢可表示為

由以=0可解出球A所帶的電荷分,再由帶電球面電勢的疊加,可求出球A和球殼B的電勢.

解(1)由分析可知,球A的外表面帶電3.0x10-8(2,球殼B內(nèi)表面帶電一30xl(F'C,外表面帶電5.0x10

SC.由電勢的疊加,球A和球殼B的電勢分別為

(2)將球殼B接地后斷開,再把球A接地,設(shè)球A帶電外,球A和球殼B的電勢為

解得

即球A外表面帶電2.12X10-C,由分析可推得球殼B內(nèi)表面帶電一2.12xlO-C,外表面帶電-0.9xl(T'

C.另外球A和球殼B的電勢分別為

導(dǎo)體的接地使各導(dǎo)體的電勢分布發(fā)生變化,打破了原有的靜電平衡,導(dǎo)體表

面的電荷將重新分布,以建立新的靜電平衡.

6-10兩塊帶電量分別為Q、Q的導(dǎo)體平板平行相對放置(如圖所示),假設(shè)導(dǎo)體平板面積為S,兩塊導(dǎo)

體平板間距為d,并且S>>d.試證明(1)相向的兩面電荷面密度大小相等符號相反;(2)相背的兩面

電荷面密度大小相等符號相同.

分析導(dǎo)體平板間距d?S,忽略邊緣效應(yīng),導(dǎo)體板近似可以當(dāng)作無限大帶電平板處理。取如圖(b)所示

的圓柱面為高斯面,高斯面的側(cè)面與電場強(qiáng)度E平行,電場強(qiáng)度通量為零;高斯面的兩個(gè)端面在導(dǎo)體內(nèi)部,

因?qū)w內(nèi)電場強(qiáng)度為零,因而電場強(qiáng)度通量也為零,由高斯定理

得=0

上式表明處于靜電平衡的平行導(dǎo)體板,相對兩個(gè)面帶等量異號電荷.再利用疊加原理,導(dǎo)體板上四個(gè)帶電面

在導(dǎo)體內(nèi)任意一點(diǎn)激發(fā)的合電場強(qiáng)度必須為零,因而平行導(dǎo)體板外側(cè)兩個(gè)面帶等量同號電荷.

證明(1)設(shè)兩塊導(dǎo)體平板表面的電荷面密度分別為6、6、6、6,取如圖(b)所示的圓柱面為高斯面,

高斯面由側(cè)面亂和兩個(gè)端面£、S3構(gòu)成,由分析可知

得工夕=(T2AS+(T3AS=0,+q=0

相向的兩面電荷面密度大小相等符號相反.

(2)由電場的疊加原理,取水平向右為參考正方向,導(dǎo)體內(nèi)。點(diǎn)的電場強(qiáng)度為

相背的兩面電荷面密度大小相等符號相同.

6-11將帶電量為。的導(dǎo)體板A從遠(yuǎn)處移至不帶電的導(dǎo)體板B附近,如

圖(a)所示,兩導(dǎo)體板幾何形狀完全相同,面積均為$,移近后兩導(dǎo)體板距離為d(d《屈).

(1)忽略邊緣效應(yīng)求兩導(dǎo)體板間的電勢差;

(2)若將B接地,結(jié)果又將如何?

分析由習(xí)題6-10可知,導(dǎo)體板達(dá)到靜電平衡時(shí),相對兩個(gè)面帶等量異號電荷;相背兩個(gè)面帶等量同號

電荷.再由電荷守恒可以求出導(dǎo)體各表面的電荷分布,進(jìn)一步求出電場分布和導(dǎo)體間的電勢差.

導(dǎo)體板B接地后電勢為零,B的外側(cè)表面不帶電,根據(jù)導(dǎo)體板相背兩個(gè)面帶等量同號電荷可知,A的外側(cè)表

面也不再帶電,由電荷守恒可以求出導(dǎo)體各表面的電荷分布,進(jìn)一步求出電場分布和導(dǎo)體間的電勢差.

解(1)如圖(b)所示,依照題意和導(dǎo)體板達(dá)到靜電平衡時(shí)的電荷分布規(guī)律可得

解得

兩導(dǎo)體板間電場強(qiáng)度為E=-2—;方向?yàn)锳指向B.

兩導(dǎo)體板間的電勢差為UAB=-^-

220s

(2)如圖(c)所示,導(dǎo)體板B接地后電勢為零.

兩導(dǎo)體板間電場強(qiáng)度為E'=2;方向?yàn)锳指向B.

兩導(dǎo)體板間的電勢差為。h=絲

6-12如圖所示球形金屬腔帶電量為Q>0,內(nèi)半徑為。,外半徑為6,腔內(nèi)距球心。為r處有一點(diǎn)電荷4,

求球心的電勢.

分析導(dǎo)體球達(dá)到靜電平衡時(shí),內(nèi)表面感應(yīng)電荷一q,外表面感應(yīng)電荷0內(nèi)表面感應(yīng)電荷不均勻分布,外表

面感應(yīng)電荷均勻分布.球心。點(diǎn)的電勢由點(diǎn)電荷力導(dǎo)體表面的感應(yīng)電荷共同決定.在帶電面上任意取一電荷

元,電荷元在球心產(chǎn)生的電勢

由于R為常量,因而無論球面電荷如何分布,半徑為R的帶電球面在球心產(chǎn)生的電勢為

由電勢的疊加可以求得球心的電勢.

解導(dǎo)體球內(nèi)表面感應(yīng)電荷一q,外表面感應(yīng)電荷q;依照分析,球心的電勢

6-13在真空中,將半徑為R的金屬球接地,與球心。相距為r(r>R)處放置一點(diǎn)電荷分不計(jì)接地導(dǎo)線

上電荷的影響.求金屬球表面上的感應(yīng)電荷總量.

分析金屬球?yàn)榈葎蒹w,金屬球上任一點(diǎn)的電勢V等于點(diǎn)電荷q和金屬球表面感應(yīng)電荷q,在球心激發(fā)的電勢

之和.在球面上任意取一電荷元d/,電荷元可以視為點(diǎn)電荷,金屬球表面的感應(yīng)電荷在點(diǎn)O激發(fā)的電勢為

點(diǎn)??傠妱轂?/p>

而接地金屬球的電勢%=0,由此可解出感應(yīng)電荷十.

解金屬球接地,其球心的電勢

感應(yīng)電荷總量

6-14地球和電離層可當(dāng)作球形電容器,它們之間相距約為100km,試估算地球一電離層系統(tǒng)的電容.設(shè)

地球與電離層之間為真空.解由于地球半徑R=6.37X10"m;電離層半徑凡=1.00XI05m+R=6.47

X106m,根據(jù)球形電容器的電容公式,可得

6-15兩線輸電線,其導(dǎo)線半徑為3.26mm,兩線中心相距0.50m,導(dǎo)線位于地面上空很高處,因而大地影

響可以忽略.求輸電線單位長度的電容.

解由教材第六章6-4節(jié)例3可知兩輸電線的電勢差

因此,輸電線單位長度的電容

代入數(shù)據(jù)C=5.52xl()T2F

6-16電容式計(jì)算機(jī)鍵盤的每一個(gè)鍵下面連接一小塊金屬片,金屬片與底

板上的另一塊金屬片間保持一定空氣間隙,構(gòu)成一小電容器(如圖)。當(dāng)按下按鍵時(shí)電容發(fā)生變化,通過與之

相連的電子線路向計(jì)算機(jī)發(fā)出該鍵相應(yīng)的代碼信號。假設(shè)金屬片面積為50.0mm,,兩金屬片之間的距離是

0.600mm。如果電路能檢測出的電容變化量是0.250pF,試問按鍵需要按下多大的距離才能給出必要的信號?

分析按下按鍵時(shí)兩金屬片之間的距離變小,電容增大,由電容的變化量可以求得按鍵按下的最小距離:

解按下按鍵時(shí)電容的變化量為

按鍵按下的最小距離為

6-17蓋革一米勒管可用來測量電離輻射.該管的基本結(jié)構(gòu)如圖所示,一半徑為R的長直導(dǎo)線作為一個(gè)電

極,半徑為R的同軸圓柱筒為另一個(gè)電極.它們之間充以相對電容率er的氣體.當(dāng)電離粒子通過氣體

時(shí),能使其電離.若兩極間有電勢差時(shí),極間有電流,從而可測出電離粒子的數(shù)量.如以E1表示半徑為R1

的長直導(dǎo)線附近的電場強(qiáng)度.(1)求兩極間電勢差的關(guān)系式;(2)若&=2.0X106V-m,R=0.30

mm,R:=20.0mm,兩極間的電勢差為多少?

分析兩極間的電場可以近似認(rèn)為是無限長同軸帶電圓柱體間的電場,由于電荷在圓柱面上均勻分布,電場

分布為軸對稱.由高斯定理不難求得兩極間的電場強(qiáng)度,并利用電場強(qiáng)度與電勢差的積分關(guān)系。=「‘£7/

求出兩極間的電勢差.

解(1)由上述分析,利用高斯定理可得則兩極間的電場強(qiáng)度

eo

導(dǎo)線表面(r=/?!)的電場強(qiáng)度

兩極間的電勢差

(2)當(dāng)g=2.0xIO,v.m",R=0.30mm,R>=20.0mm時(shí),

6-18一片二氧化鈦晶片,其面積為1.0cm2,厚度為0.10mm.把平行平板電容器的兩極板緊貼在晶片兩

側(cè).(1)求電容器的電容;(2)當(dāng)在電容器的兩極間加上12V電壓時(shí),極板上的電荷為多少?此時(shí)自由電

荷和極化電荷的面密度各為多少?(3)求電容器內(nèi)的電場強(qiáng)度.

解(1)查表可知二氧化鈦的相對電容率3=173,故充滿此介質(zhì)的平板電容器的電容

(2)電容器加上U=12V的電壓時(shí),極板上的電荷

極板上自由電荷面密度為

晶片表面極化電荷密度

(3)晶片內(nèi)的電場強(qiáng)度為

6—19如圖所示,半徑R=0.10m的導(dǎo)體球帶有電荷。=1.0X10'C,導(dǎo)體外有兩層均勻介質(zhì),一層介

質(zhì)的3=5.0,厚度d=0.10m,另一層介質(zhì)為空氣,充滿其余空間.求:(1)離球心為r=5cm、15cm、

25cm處的。和E;(2)離球心為r=5cm、15cm、25cm處的匕(3)極化電荷面密度h.

分析帶電球上的自由電荷均勻分布在導(dǎo)體球表面,電介質(zhì)的極化電荷也均勻分布在介質(zhì)的球形界面上,因

而介質(zhì)中的電場是球?qū)ΨQ分布的.任取同心球面為高斯面,電位移矢量D的通量與自由電荷分布有關(guān),因

此,在高斯面上D呈均勻?qū)ΨQ分布,由高斯定理,=可得。(/)?再由E=£>/%與可得E(r).

介質(zhì)內(nèi)電勢的分布,可由電勢和電場強(qiáng)度的積分關(guān)系7/求得,或者由電勢疊加原理求得.

極化電荷分布在均勻介質(zhì)的表面,其極化電荷面密度匕[=2,?

解(1)取半徑為r的同心球面為高斯面,由高斯定理得

2

r<RDt-4nr=0

=0;Ei=U

2

R<r<R+dD2-4nr=Q

nQ五二0

222

24nr'47T£oerr

r>R+d.4;ir2=Q

D3=~^y;—2^

4兀廠-4%£廠

將不同的r值代入上述關(guān)系式,可得r=5cm、15cm和25cm時(shí)的電位移和電場強(qiáng)度的大小,其方向均沿

徑向朝外.

n=5cm,該點(diǎn)在導(dǎo)體球內(nèi),則

。=0;£=0

r\r\

rz=15cm,該點(diǎn)在介質(zhì)層內(nèi),£r=5.0,則

D=-^=3.5x10-8CM;£=—-=8.0xl02Vm-1

’24兀]-24兀%£4

r3=25cm,該點(diǎn)在空氣層內(nèi),空氣中e0,則

D,=-^=1.3x1。-8c.m.;E=—^―=1.4xl02Vm-'

54叫2〃4

(2)取無窮遠(yuǎn)處電勢為零,由電勢與電場強(qiáng)度的積分關(guān)系得

-3=25cm,

及=15cm,

n=5cm,

(3)均勻介質(zhì)的極化電荷分布在介質(zhì)界面上,因空氣的電容率£=%,極化電荷可忽略.故在介質(zhì)外表

面;

在介質(zhì)內(nèi)表面:

介質(zhì)球殼內(nèi)、外表面的極化電荷面密度雖然不同,但是兩表面極化電荷的總量還是等量異號.

6-20人體的某些細(xì)胞壁兩側(cè)帶有等量的異號電荷。設(shè)某細(xì)胞壁厚為5.2X109m,兩表面所帶面電荷密度

為±5.2X10'C/n?,內(nèi)表面為正電荷.如果細(xì)胞壁物質(zhì)的相對電容率為6.0,求(1)細(xì)胞壁內(nèi)的電場強(qiáng)

度;(2)細(xì)胞壁兩表面間的電勢差.

解(1)細(xì)胞壁內(nèi)的電場強(qiáng)度后=二=9.8xIO,v/m:方向指向細(xì)胞外.

(2)細(xì)胞壁兩表面間的電勢差U=&/=5.1x10-2v.

6-21一平板電容器,充電后極板上電荷面密度為5=4.5x105cm2.現(xiàn)將兩極板與電源斷開,然后再把相

對電容率為以=2.0的電介質(zhì)插入兩極板之間.此時(shí)電介質(zhì)中的。、E和尸各為多少?

分析平板電容器極板上自由電荷均勻分布,電場強(qiáng)度和電位移矢量都是常矢量.充電后斷開電源,在介質(zhì)

插入前后,導(dǎo)體板上自由電荷保持不變.取圖所示的圓柱面為高斯面,由介質(zhì)中的高斯定理可求得電位移矢

量。,再根據(jù)

E=2,F=D-E(}E

£0£r

可求得電場強(qiáng)度E和電極化強(qiáng)度矢量P.

解由分析可知,介質(zhì)中的電位移矢量的大小

介質(zhì)中的電場強(qiáng)度和極化強(qiáng)度的大小分別為

D.P、E方向相同,均由正極板指向負(fù)極板(圖中垂直向下).

6-22在一半徑為吊的長直導(dǎo)線外,套有氯丁橡膠絕緣護(hù)套,護(hù)套外半徑為凡,相對電容率為外.設(shè)沿

軸線單位長度上,導(dǎo)線的電荷密度為九試求介質(zhì)層內(nèi)的。、E和P.

分析將長直帶電導(dǎo)線視作無限長,自由電荷均勻分布在導(dǎo)線表面.在絕緣介質(zhì)層的內(nèi)、外表面分別出現(xiàn)極

化電荷,這些電荷在內(nèi)外表面呈均勻分布,所以電場是軸對稱分布.取同軸柱面為高斯面,由介質(zhì)中的高斯

定理可得電位移矢量。的分布.在介質(zhì)中£>=4£,/,P=D—%E,可進(jìn)一步求得電場強(qiáng)度E和電極化

強(qiáng)度矢量P的分布.

解由介質(zhì)中的高斯定理,有

在均勻各向同性介質(zhì)中

6-23如圖所示,球形電極浮在相對電容率為&=3.0的油槽中.球的一半浸沒在油中,另一半在空氣中.已

知電極所帶凈電荷Q。=2.0XW8C.問球的上、下部分各有多少電荷?

分析由于導(dǎo)體球一半浸在油中,電荷在導(dǎo)體球上已不再是均勻分布,電場分布不再呈球?qū)ΨQ,因此,不能

簡單地由高斯定理求電場和電荷的分布.我們可以將導(dǎo)體球理解為兩個(gè)分別懸浮在油和空氣中的半球形孤立

電容器,靜電平衡時(shí)導(dǎo)體球上的電荷分布使導(dǎo)體成為等勢體,故可將導(dǎo)體球等效為兩個(gè)半球電容并聯(lián),其相

對無限遠(yuǎn)處的電勢均為憶且

丫=2=0(1)

GG

另外導(dǎo)體球上的電荷總量保持不變,應(yīng)有

。I+。2=以⑵

因而可解得Qi、Qi.

解將導(dǎo)體球看作兩個(gè)分別懸浮在油和空氣中的半球形孤立電容器,上半球在空氣中,電容為

下半球在油中,電容為

由分析中式(1)和式(2)可解得

由于導(dǎo)體球周圍部分區(qū)域充滿介質(zhì),球上電荷均勻分布的狀態(tài)將改變.可以證明,此時(shí)介質(zhì)中的電場強(qiáng)度與

真空中的電場強(qiáng)度也不再滿足后="的關(guān)系.事實(shí)上,只有當(dāng)電介質(zhì)均勻充滿整個(gè)電場,并且自由電荷分

布不變時(shí),才滿足E=”.

6-24有兩塊相距為0.50的薄金屬板A、B構(gòu)成的空氣平板電容器被屏蔽在一金屬盒K內(nèi),金屬盒上、下

兩壁與A、B分別相距0.25mm,金屬板面積為30mmX40mm。求(1)被屏蔽后電容器的電容變?yōu)樵瓉?/p>

的幾倍;(2)若電容器的一個(gè)引腳不慎與金屬屏蔽盒相碰,問此時(shí)的電容又為原來的幾倍?

分析薄金屬板A、B與金屬盒一起構(gòu)成三個(gè)電容器,其等效電路圖如圖(b)所示,由于兩導(dǎo)體間距離較

小,電容器可視為平板電容器,通過分析等效電路圖可以求得A、B間的電容。

解(1)由等效電路圖可知

由于電容器可以視作平板電容器,且4=24=24,故G=G=2G,因此A、B間的總電容

(2)若電容器的一個(gè)引腳不慎與金屬屏蔽盒相碰,相當(dāng)于C2(或者C3)極板短接,其電容為零,則總電

6-25在A點(diǎn)和B點(diǎn)之間有5個(gè)電容器,其連接如圖所示.(1)求A、B兩點(diǎn)之間的等效電容;(2)若A、

B之間的電勢差為12V,求"c、UCD和UD“.

解(1)由電容器的串、并聯(lián),有

求得等效電容CAB=4pF.

(2)由于QAC=QCD=QDB=QAB,得

6-26有一個(gè)空氣平板電容器,極板面積為S,間距為止現(xiàn)將該電容器接在端電壓為U的電源上充電,當(dāng)

(1)充足電后;(2)然后平行插入一塊面積相同、厚度為5(3<d)、相對電容率為£,的電介質(zhì)板;(3)

將上述電介質(zhì)換為同樣大小的導(dǎo)體板.分別求電容器的電容C,極板上的電荷Q和極板間的電場強(qiáng)度E.

分析電源對電容器充電,電容器極板間的電勢差等于電源端電壓U.插入電介質(zhì)后,由于介質(zhì)界面出現(xiàn)極化

甩荷,極化電荷在介質(zhì)中激發(fā)的電場與原電容器極板上自由電荷激發(fā)的電場方向相反,介質(zhì)內(nèi)的電場減

弱.由于極板間的距離d不變,因而與電源相接的導(dǎo)體極板將會從電源獲得電荷,以維持電勢差不變,并有

相類似的原因,在平板電容器極板之間,若平行地插入一塊導(dǎo)體板,由于極板上的自由電荷和插入導(dǎo)體板上

的感應(yīng)電荷在導(dǎo)體板內(nèi)激發(fā)的電場相互抵消,與電源相接的導(dǎo)體極板將會從電源獲得電荷,使間隙中的電場E

增強(qiáng),以維持兩極板間的電勢差不變,并有

綜上所述,接上電源的平板電容器,插入介質(zhì)或?qū)w后,極板上的自由電荷

均會增加,而電勢差保持不變.

解(1)空氣平板電容器的電容

充電后,極板上的電荷和極板間的電場強(qiáng)度為

(2)插入電介質(zhì)后,電容器的電容G為

故有

介質(zhì)內(nèi)電場強(qiáng)度

空氣中電場強(qiáng)度

(3)插入導(dǎo)體達(dá)到靜電平衡后,導(dǎo)體為等勢體,其電容和極板上的電荷分別為

導(dǎo)體中電場強(qiáng)度E[=0

空氣中電場強(qiáng)度

無論是插入介質(zhì)還是插入導(dǎo)體,由于電容器的導(dǎo)體極板與電源相連,在維持電勢差不變的同時(shí)都從電源獲得

了電荷,自由電荷分布的變化同樣使得介質(zhì)內(nèi)的電場強(qiáng)度不再等于E%,.

6-27為了實(shí)時(shí)檢測紡織品、紙張等材料的厚度(待測材料可視作相對電容率為£1的電介質(zhì)),通常在生

產(chǎn)流水線上設(shè)置如圖所示的傳感裝置,其中A,B為平板電容器的導(dǎo)體極板,4為兩極板間的距離.試說明檢

測原理,并推出直接測量量電容C與間接測量量厚度d之間的函數(shù)關(guān)系.如果要檢測鋼板等金屬材料的厚

度,結(jié)果又將如何?

分析導(dǎo)體極板A、B和待測物體構(gòu)成一有介質(zhì)的平板電容器,關(guān)于電容C與材料的厚度的關(guān)系,可參見題6

—26的分析.

解由分析可知,該裝置的電容為

則介質(zhì)的厚度為

如果待測材料是金屬導(dǎo)體,其等效電容為

導(dǎo)體材料的厚度

實(shí)時(shí)地測量A、B間的電容量C,根據(jù)上述關(guān)系式就可以間接地測出材料的厚度.通常智能化的儀表可以實(shí)時(shí)

地顯示出待測材料的厚度.

6-28利用電容傳感器測量油料液面高度.其原理如圖所示,導(dǎo)體圓管A與儲油罐B相連,圓管的內(nèi)徑為

D,管中心同軸插入一根外徑為d的導(dǎo)體棒C,d、D均遠(yuǎn)小于管長L并且相互絕緣.試證明:當(dāng)導(dǎo)體圓管與

導(dǎo)體棒之間接以電壓為U的電源時(shí),圓管上的電荷與液面高度成正比(油料的相對電容率為/).

分析由于乩D?L,導(dǎo)體A、C構(gòu)成圓柱形電容器,可視為一個(gè)長X(X為液面高度)的介質(zhì)電容器Ci和

一個(gè)長L-X的空氣電容器C2的并聯(lián),它們的電容值均隨X而改變.因此其等效電容C=G+C2也是X

的函數(shù).由于。=CU,在電壓一定時(shí),電荷Q僅隨C而變化,求出。與液面高度X的函數(shù)關(guān)系,即可得證

證由分析知,導(dǎo)體A、C構(gòu)成一組柱形電容器,它們的電容分別為

其總電容

其中

2麻R-L)

a~~D"'D―—~D-

InIn

dd

即導(dǎo)體管上所帶電荷Q與液面高度X成正比,油罐與電容器聯(lián)通.兩液面等高,測出電荷Q即可確定油罐的

液面高度.

6-29有一電容為0.50RF的平行平板電容器,兩極板間被厚度為0.01mm的聚四氟乙烯薄膜所隔開,(1)

求該電容器的額定電壓;(2)求電容器存貯的最大能量.

分析通過查表可知聚四氟乙烯的擊穿電場強(qiáng)度及=1.9X107V/m,電容器中的電場強(qiáng)度EWEb,由此可

以求得甩容器的最大電勢差和甩容器存貯的最大能量.

解(1)電容器兩極板間的電勢差

(2)電容器存貯的最大能量

6-30半徑為0.10cm的長直導(dǎo)線,外面套有內(nèi)半徑為1.0cm的共軸導(dǎo)體圓筒,導(dǎo)線與圓筒間為空氣.略

去邊緣效應(yīng),求:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論