版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆云南紅河州一中數(shù)學(xué)高一第二學(xué)期期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若圓上有且僅有兩個(gè)點(diǎn)到直線的距離等于,則的取值范圍是()A. B. C. D.2.在中,,,,則的面積是().A. B. C.或 D.或3.的展開式中含的項(xiàng)的系數(shù)為()A.-1560 B.-600 C.600 D.15604.在中,角所對的邊分別為,若,,,則等于()A.4 B. C. D.5.已知各頂點(diǎn)都在一個(gè)球面上的正四棱柱(其底面是正方形,且側(cè)棱垂直于底面)高為4,體積為16,則這個(gè)球的表面積是()A. B. C. D.6.在中,若,那么是()A.直角三角形 B.鈍角三角形 C.銳角三角形 D.不能確定7.在空間直角坐標(biāo)系中,軸上的點(diǎn)到點(diǎn)的距離是,則點(diǎn)的坐標(biāo)是()A. B. C. D.8.若向量互相垂直,且,則的值為()A. B. C. D.9.設(shè)集合,集合為函數(shù)的定義域,則()A. B. C. D.10.設(shè)變量滿足約束條件:,則的最小值()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則_________.12.已知均為正數(shù),則的最大值為______________.13.若,則________.14._______________。15.若,,,則M與N的大小關(guān)系為___________.16.已知函數(shù)(,)的部分圖像如圖所示,則函數(shù)解析式為_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,平面平面,,且,.(Ⅰ)求證:;(Ⅱ)若為的中點(diǎn),求證:平面.18.在△ABC中,a=7,b=8,cosB=–.(Ⅰ)求∠A;(Ⅱ)求AC邊上的高.19.的內(nèi)角所對的邊分別為,且.(1)求角;(2)若,且的面積為,求的值.20.已知等差數(shù)列an滿足a3=5,a6=a4(1)求數(shù)列an,b(2)設(shè)cn=anbn221.已知無窮數(shù)列,是公差分別為、的等差數(shù)列,記(),其中表示不超過的最大整數(shù),即.(1)直接寫出數(shù)列,的前4項(xiàng),使得數(shù)列的前4項(xiàng)為:2,3,4,5;(2)若,求數(shù)列的前項(xiàng)的和;(3)求證:數(shù)列為等差數(shù)列的必要非充分條件是.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解題分析】
先求出圓心到直線的距離,然后結(jié)合圖象,即可得到本題答案.【題目詳解】由題意可得,圓心到直線的距離為,故由圖可知,當(dāng)時(shí),圓上有且僅有一個(gè)點(diǎn)到直線的距離等于;當(dāng)時(shí),圓上有且僅有三個(gè)點(diǎn)到直線的距離等于;當(dāng)則的取值范圍為時(shí),圓上有且僅有兩個(gè)點(diǎn)到直線的距離等于.故選:B【題目點(diǎn)撥】本題主要考查直線與圓的綜合問題,數(shù)學(xué)結(jié)合是解決本題的關(guān)鍵.2、C【解題分析】,∴,或.()當(dāng)時(shí),.∴.()當(dāng)時(shí),.∴.故選.3、A【解題分析】的項(xiàng)可以由或的乘積得到,所以含的項(xiàng)的系數(shù)為,故選A.4、B【解題分析】
根據(jù)正弦定理,代入數(shù)據(jù)即可?!绢}目詳解】由正弦定理,得:,即,即:解得:選B?!绢}目點(diǎn)撥】此題考查正弦定理:,代入數(shù)據(jù)即可,屬于基礎(chǔ)題目。5、C【解題分析】
根據(jù)正四棱柱的底面是正方形,高為4,體積為16,求得底面正方形的邊長,再求出其對角線長,然后根據(jù)正四棱柱的體對角線是外接球的直徑可得球的半徑,再根據(jù)球的表面積公式可求得.【題目詳解】依題意正四棱柱的體對角線是其外接球的直徑,的中點(diǎn)是球心,如圖:依題意設(shè),則正四棱柱的體積為:,解得,所以外接球的直徑,所以外接球的半徑,則這個(gè)球的表面積是.故選C.【題目點(diǎn)撥】本題考查了球與正四棱柱的組合體,球的表面積公式,正四棱柱的體積公式,屬中檔題.6、C【解題分析】
由tanAtanB>1可得A,B都是銳角,故tanA和tanB都是正數(shù),可得tan(A+B)<0,故A+B為鈍角,C為銳角,可得結(jié)論.【題目詳解】由△ABC中,A,B,C為三個(gè)內(nèi)角,若tanAtanB>1,可得A,B都是銳角,故tanA和tanB都是正數(shù),∴tan(A+B)0,故A+B為鈍角.由三角形內(nèi)角和為180°可得,C為銳角,故△ABC是銳角三角形,故選C.【題目點(diǎn)撥】本題考查根據(jù)三角函數(shù)值的符號(hào)判斷角所在的范圍,兩角和的正切公式的應(yīng)用,判斷A+B為鈍角,是解題的關(guān)鍵.7、A【解題分析】
由空間兩點(diǎn)的距離公式,代入求解即可.【題目詳解】解:由已知可設(shè),由空間兩點(diǎn)的距離公式可得,解得,即,故選:A.【題目點(diǎn)撥】本題考查了空間兩點(diǎn)的距離公式,屬基礎(chǔ)題.8、B【解題分析】
首先根據(jù)題意得到,再計(jì)算即可.【題目詳解】因?yàn)橄蛄炕ハ啻怪保?,所?所以.故選:B【題目點(diǎn)撥】本題主要考查平面向量模長的計(jì)算,同時(shí)考查了平面向量數(shù)量積,屬于簡單題.9、B【解題分析】
解不等式化簡集合的表示,求出函數(shù)的定義域,表示成集合的形式,運(yùn)用集合的并集運(yùn)算法則,結(jié)合數(shù)軸求出.【題目詳解】因?yàn)?,所?又因?yàn)楹瘮?shù)的定義域?yàn)椋?因此,故本題選B.【題目點(diǎn)撥】本題考查了集合的并集運(yùn)算,正確求出對數(shù)型函數(shù)的定義域,運(yùn)用數(shù)軸是解題的關(guān)鍵.10、D【解題分析】
如圖作出可行域,知可行域的頂點(diǎn)是A(-2,2)、B()及C(-2,-2),平移,當(dāng)經(jīng)過A時(shí),的最小值為-8,故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】由題意可得:點(diǎn)睛:熟記同角三角函數(shù)關(guān)系式及誘導(dǎo)公式,特別是要注意公式中的符號(hào)問題;注意公式的變形應(yīng)用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.這是解題中常用到的變形,也是解決問題時(shí)簡化解題過程的關(guān)鍵所在.12、【解題分析】
根據(jù)分子和分母的特點(diǎn)把變形為,運(yùn)用重要不等式,可以求出的最大值.【題目詳解】(當(dāng)且僅當(dāng)且時(shí)取等號(hào)),(當(dāng)且僅當(dāng)且時(shí)取等號(hào)),因此的最大值為.【題目點(diǎn)撥】本題考查了重要不等式,把變形為是解題的關(guān)鍵.13、【解題分析】
先求,再代入求值得解.【題目詳解】由題得所以.故答案為【題目點(diǎn)撥】本題主要考查共軛復(fù)數(shù)和復(fù)數(shù)的模的求法,意在考查學(xué)生對這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.14、【解題分析】
本題首先可根據(jù)同角三角函數(shù)關(guān)系式化簡得出,然后根據(jù)兩角差的正弦公式化簡得出,最后根據(jù)二倍角公式以及三角函數(shù)誘導(dǎo)公式即可得出結(jié)果?!绢}目詳解】,故答案為【題目點(diǎn)撥】本題考查根據(jù)三角函數(shù)相關(guān)公式進(jìn)行化簡求值,考查到的公式有、、以及,考查化歸與轉(zhuǎn)化思想,是中檔題。15、【解題分析】
根據(jù)自變量的取值范圍,利用作差法即可比較大小.【題目詳解】,,,所以當(dāng)時(shí),所以,即,故答案為:.【題目點(diǎn)撥】本題考查了作差法比較整式的大小,屬于基礎(chǔ)題.16、y=sin(2x+).【解題分析】
由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值答案可求【題目詳解】根據(jù)函數(shù)y=sin(ωx+φ)(ω>0,0<φ)的部分圖象,可得A=1,?,∴ω=2,再結(jié)合五點(diǎn)法作圖可得2?φ=π,∴φ,則函數(shù)解析式為y=sin(2x+)故答案為:y=sin(2x+).【題目點(diǎn)撥】本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值難度中檔.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ)見解析【解題分析】
(Ⅰ)線線垂直先求線面垂直,即平面,進(jìn)而可得;(Ⅱ)連接D與PC的中點(diǎn)F,只需證明即可.【題目詳解】(Ⅰ)因?yàn)?,所以.因?yàn)槠矫嫫矫?,且平面平面,所以平面.因?yàn)槠矫?,所以.(Ⅱ)證明:取中點(diǎn),連接,.因?yàn)闉橹悬c(diǎn),所以,且.因?yàn)椋?,所以,且,所以四邊形為平行四邊形.所以.因?yàn)槠矫?,平面,所以平面.【題目點(diǎn)撥】此題考查立體幾何證明,線線垂直一般通過線面垂直證明,線面平行只需在面內(nèi)找到一個(gè)線與已知線平行即可,題目中出現(xiàn)中點(diǎn)一般也要在找其他中點(diǎn)連接,屬于較易題目.18、(1)∠A=(2)AC邊上的高為【解題分析】分析:(1)先根據(jù)平方關(guān)系求,再根據(jù)正弦定理求,即得;(2)根據(jù)三角形面積公式兩種表示形式列方程,再利用誘導(dǎo)公式以及兩角和正弦公式求,解得邊上的高.詳解:解:(1)在△ABC中,∵cosB=–,∴B∈(,π),∴sinB=.由正弦定理得=,∴sinA=.∵B∈(,π),∴A∈(0,),∴∠A=.(2)在△ABC中,∵sinC=sin(A+B)=sinAcosB+sinBcosA==.如圖所示,在△ABC中,∵sinC=,∴h==,∴AC邊上的高為.點(diǎn)睛:解三角形問題,多為邊和角的求值問題,這就需要根據(jù)正、余弦定理結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關(guān)系,從而達(dá)到解決問題的目的.19、(1)(2)【解題分析】
(1)對等式,運(yùn)用正弦定理實(shí)現(xiàn)邊角轉(zhuǎn)化,再利用同角三角函數(shù)關(guān)系中的商關(guān)系,可求出角的正切值,最后根據(jù)角的取值范圍,求出角;(2)由三角形面積公式,可以求出的值,最后利用余弦定理,求出的值.【題目詳解】(1)∵,∴,∵,∴,∴,∴在中;(2)∵的面積為,∴,∴,由余弦定理,有,∴.【題目點(diǎn)撥】本題考查正弦定理、余弦定理、三角形面積公式,考查了數(shù)學(xué)運(yùn)算能力.20、(1)an=2n-1,【解題分析】
(1)利用等差數(shù)列、等比數(shù)列的通項(xiàng)公式即可求得;(2)由(1)知,cn=anbn2【題目詳解】(1)設(shè)等差數(shù)列an的公差為d,等比數(shù)列bn的公比為因?yàn)閍6=a4+4所以an由b3b5又顯然b4必與b2同號(hào),所以所以q2=b所以bn(2)由(1)知,cn則Tn12①-②,得1=1+1-所以Tn【題目點(diǎn)撥】用錯(cuò)位相減法求和應(yīng)注意的問題(1)要善于識(shí)別題目類型,特別是等比數(shù)列公比為負(fù)數(shù)的情形;(2)在寫出“Sn”與“qSn”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對齊”以便下一步準(zhǔn)確寫出“Sn-qSn”的表達(dá)式;(3)在應(yīng)用錯(cuò)位相減法求和時(shí),若等比數(shù)列的公比為參數(shù),應(yīng)分公比等于1和不等于1兩種情況求解.21、(1)的前4項(xiàng)為1,2,3,4,的前4項(xiàng)為1,1,1,1;(2);(3)證明見解析【解題分析】
(1)根據(jù)定義,選擇,的前4項(xiàng),盡量選用整數(shù)計(jì)算方便;(2)分別考慮,的前項(xiàng)的規(guī)律,然后根據(jù)計(jì)算的運(yùn)算規(guī)律計(jì)算;(3)根據(jù)必要不充分條件的推出情況去證明即可.【題目詳解】(1)由的前4項(xiàng)為:2,3,4,5,選、的前項(xiàng)為正整數(shù):的前4項(xiàng)為1,2,3,4,的前4項(xiàng)為1,1,1,1;(2)將的前項(xiàng)列舉出:;將的前項(xiàng)列舉出:;則;(3)充分性:取,此時(shí),將的前
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三措施施工方案(3篇)
- 長沙市K郡雙語實(shí)驗(yàn)中學(xué)2026屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析
- 2026屆福建省長汀一中高二生物第一學(xué)期期末統(tǒng)考試題含解析
- 罕見腫瘤的個(gè)體化治療治療目標(biāo)設(shè)定原則
- 2026廣東云浮市中醫(yī)院招聘15人備考題庫帶答案詳解
- 油品運(yùn)輸公司財(cái)務(wù)制度
- 廢品財(cái)務(wù)制度
- 建立小微企業(yè)財(cái)務(wù)制度
- 鄉(xiāng)村一體化后財(cái)務(wù)制度
- 動(dòng)物園財(cái)務(wù)制度
- 藥廠新員工培訓(xùn)課件
- 放射性皮膚損傷護(hù)理指南
- 2025年青島市中考數(shù)學(xué)試卷(含答案解析)
- 下肢動(dòng)脈栓塞的護(hù)理
- 總經(jīng)理聘用管理辦法
- 長護(hù)險(xiǎn)護(hù)理培訓(xùn)
- DB34∕T 4648-2023 鋼結(jié)構(gòu)橋梁頂推施工技術(shù)規(guī)程
- 2025年時(shí)政100題(附答案)
- 貸款用別人名字協(xié)議書
- 寺院圍墻修繕方案(3篇)
- 麻醉科PDCA持續(xù)改進(jìn)麻醉術(shù)后鎮(zhèn)痛
評論
0/150
提交評論