版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆安徽省宿州市埇橋區(qū)數(shù)學高一第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,分別為角的對邊,若,且,則邊=()A. B. C. D.2.若,則是()A.等邊三角形 B.等腰三角形C.直角或等腰三角形 D.等腰直角三角形3.連續(xù)拋擲一枚質(zhì)地均勻的硬幣10次,若前4次出現(xiàn)正面朝上,則第5次出現(xiàn)正面朝上的概率是()A. B. C. D.4.擲一枚均勻的硬幣,如果連續(xù)拋擲2020次,那么拋擲第2019次時出現(xiàn)正面向上的概率是()A. B. C. D.5.以下有四個說法:①若、為互斥事件,則;②在中,,則;③和的最大公約數(shù)是;④周長為的扇形,其面積的最大值為;其中說法正確的個數(shù)是()A. B.C. D.6.若直線:與直線:平行,則的值為()A.-1 B.0 C.1 D.-1或17.在中,a、b分別為內(nèi)角A、B的對邊,如果,,,則()A. B. C. D.8.已知,是兩個變量,下列四個散點圖中,,雖負相關趨勢的是()A. B.C. D.9.在中,角的對邊分別是,若,且三邊成等比數(shù)列,則的值為()A. B. C.1 D.210.設是上的偶函數(shù),且在上是減函數(shù),若且,則()A. B.C. D.與大小不確定二、填空題:本大題共6小題,每小題5分,共30分。11.下列五個正方體圖形中,是正方體的一條對角線,點M,N,P分別為其所在棱的中點,求能得出⊥面MNP的圖形的序號(寫出所有符合要求的圖形序號)______12.在中,,,,點在線段上,若,則的面積是_____.13.設函數(shù),則________.14.已知滿足約束條件,則的最大值為__15.如圖,在正方體中,點是棱上的一個動點,平面交棱于點.下列命題正確的為_______________.①存在點,使得//平面;②對于任意的點,平面平面;③存在點,使得平面;④對于任意的點,四棱錐的體積均不變.16.在中,已知M是AB邊所在直線上一點,滿足,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.正四棱錐中,,分別為,的中點.(1)求證:平面;(2)若,求異面直線和所成角的余弦值.18.某校高二年級共有800名學生參加2019年全國高中數(shù)學聯(lián)賽江蘇賽區(qū)初賽,為了解學生成績,現(xiàn)隨機抽取40名學生的成績(單位:分),并列成如下表所示的頻數(shù)分布表:分組頻數(shù)⑴試估計該年級成績不低于90分的學生人數(shù);⑵成績在的5名學生中有3名男生,2名女生,現(xiàn)從中選出2名學生參加訪談,求恰好選中一名男生一名女生的概率.19.已知f(x)=ax+ka﹣x(a>0且a≠1)是R上的奇函數(shù),且f(1).(1)求f(x)的解析式;(2)若關于x的方程f(1)+f(1﹣3mx﹣2)=0在區(qū)間[0,1]內(nèi)只有一個解,求m取值集合;(3)是否存在正整數(shù)n,使不得式f(2x)≥(n﹣1)f(x)對一切x∈[﹣1,1]均成立?若存在,求出所有n的值若不存在,說明理由20.學生會有共名同學,其中名男生名女生,現(xiàn)從中隨機選出名代表發(fā)言.求:同學被選中的概率;至少有名女同學被選中的概率.21.已知公差為正數(shù)的等差數(shù)列,,且成等比數(shù)列.(1)求;(2)若,求數(shù)列的前項的和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
由利用正弦定理化簡,再利用余弦定理表示出cosA,整理化簡得a2b2+c2,與,聯(lián)立即可求出b的值.【題目詳解】由sinB=8cosAsinC,利用正弦定理化簡得:b=8c?cosA,將cosA代入得:b=8c?,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),則b=1.故選B【題目點撥】此題考查了正弦、余弦定理,熟練掌握定理,準確計算是解本題的關鍵,是中檔題2、D【解題分析】
先根據(jù)題中條件,結(jié)合正弦定理得到,求出角,同理求出角,進而可判斷出結(jié)果.【題目詳解】因為,由正弦定理可得,所以,即,因為角為三角形內(nèi)角,所以;同理,;所以,因此,是等腰直角三角形.故選D【題目點撥】本題主要考查判定三角形的形狀問題,熟記正弦定理即可,屬于??碱}型.3、D【解題分析】
拋擲一枚質(zhì)地均勻的硬幣有兩種情況,正面朝上和反面朝上的概率都是,與拋擲次數(shù)無關.【題目詳解】解:拋擲一枚質(zhì)地均勻的硬幣,有正面朝上和反面朝上兩種可能,概率均為,與拋擲次數(shù)無關.故選:D.【題目點撥】本題考查了概率的求法,考查了等可能事件及等可能事件的概率知識,屬基礎題.4、B【解題分析】
根據(jù)概率的性質(zhì)直接得到答案.【題目詳解】根據(jù)概率的性質(zhì)知:每次正面向上的概率為.故選:.【題目點撥】本題考查了概率的性質(zhì),屬于簡單題.5、C【解題分析】
設、為對立事件可得出命題①的正誤;利用大邊對大角定理和余弦函數(shù)在上的單調(diào)性可判斷出命題②的正誤;列出和各自的約數(shù),可找出兩個數(shù)的最大公約數(shù),從而可判斷出命題③的正誤;設扇形的半徑為,再利用基本不等式可得出扇形面積的最大值,從而判斷出命題④的正誤.【題目詳解】對于命題①,若、為對立事件,則、互斥,則,命題①錯誤;對于命題②,由大邊對大角定理知,,且,函數(shù)在上單調(diào)遞減,所以,,命題②正確;對于命題③,的約數(shù)有、、、、、,的約數(shù)有、、、、、、、,則和的最大公約數(shù)是,命題③正確;對于命題④,設扇形的半徑為,則扇形的弧長為,扇形的面積為,由基本不等式得,當且僅當,即當時,等號成立,所以,扇形面積的最大值為,命題④錯誤.故選C.【題目點撥】本題考查命題真假的判斷,涉及互斥事件的概率、三角形邊角關系、公約數(shù)以及扇形面積的最值,判斷時要結(jié)合這些知識點的基本概念來理解,考查推理能力,屬于中等題.6、C【解題分析】
兩直線平行表示兩直線斜率相等,寫出斜率即可算出答案.【題目詳解】顯然,,.所以,解得,又時兩直線重合,所以.故選C【題目點撥】此題考查直線平行表示直線斜率相等,屬于簡單題.7、A【解題分析】
先求出再利用正弦定理求解即可.【題目詳解】,,,由正弦定理可得,解得,故選:A.【題目點撥】本題注意考查正弦定理的應用,屬于中檔題.正弦定理主要有三種應用:求邊和角、邊角互化、外接圓半徑.8、C【解題分析】由圖可知C選項中的散點圖描述了隨著的增加而減小的變化趨勢,故選C9、C【解題分析】
先利用正弦定理邊角互化思想得出,再利余弦定理以及條件得出可得出是等邊三角形,于此可得出的值.【題目詳解】,由正弦定理邊角互化的思想得,,,,則.、、成等比數(shù)列,則,由余弦定理得,化簡得,,則是等邊三角形,,故選C.【題目點撥】本題考查正弦定理邊角互化思想的應用,考查余弦定理的應用,解題時應根據(jù)等式結(jié)構(gòu)以及已知元素類型合理選擇正弦定理與余弦定理求解,考查計算能力,屬于中等題.10、A【解題分析】試題分析:由是上的偶函數(shù),且在上是減函數(shù),所以在上是增函數(shù),因為且,所以,所以,又因為,所以,故選A.考點:函數(shù)奇偶性與單調(diào)性的綜合應用.【方法點晴】本題主要考查了函數(shù)的單調(diào)性與奇偶性的綜合應用,其中解答中涉及函數(shù)的單調(diào)性和函數(shù)奇偶性的應用等知識點,本題的解答中先利用偶函數(shù)的圖象的對稱性得出在上是增函數(shù),然后在利用題設條案件把自變量轉(zhuǎn)化到區(qū)間上是解答的關鍵,著重考查了學生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應用,試題有一定的難度,屬于中檔試題.二、填空題:本大題共6小題,每小題5分,共30分。11、①④⑤【解題分析】為了得到本題答案,必須對5個圖形逐一進行判別.對于給定的正方體,l位置固定,截面MNP變動,l與面MNP是否垂直,可從正、反兩方面進行判斷.在MN、NP、MP三條線中,若有一條不垂直l,則可斷定l與面MNP不垂直;若有兩條與l都垂直,則可斷定l⊥面MNP;若有l(wèi)的垂面∥面MNP,也可得l⊥面MNP.解法1作正方體ABCD-A1B1C1D1如附圖,與題設圖形對比討論.在附圖中,三個截面BA1D、EFGHKR和CB1D1都是對角線l(即AC1)的垂面.對比圖①,由MN∥BAl,MP∥BD,知面MNP∥面BAlD,故得l⊥面MNP.對比圖②,由MN與面CB1D1相交,而過交點且與l垂直的直線都應在面CBlDl內(nèi),所以MN不垂直于l,從而l不垂直于面MNP.對比圖③,由MP與面BAlD相交,知l不垂直于MN,故l不垂直于面MNP.對比圖④,由MN∥BD,MP∥BA.知面MNP∥面BA1D,故l⊥面MNP.對比圖⑤,面MNP與面EFGHKR重合,故l⊥面MNP.綜合得本題的答案為①④⑤.解法2如果記正方體對角線l所在的對角截面為.各圖可討論如下:在圖①中,MN,NP在平面上的射影為同一直線,且與l垂直,故l⊥面MNP.事實上,還可這樣考慮:l在上底面的射影是MP的垂線,故l⊥MP;l在左側(cè)面的射影是MN的垂線,故l⊥MN,從而l⊥面MNP.在圖②中,由MP⊥面,可證明MN在平面上的射影不是l的垂線,故l不垂直于MN.從而l不垂直于面MNP.在圖③中,點M在上的射影是l的中點,點P在上的射影是上底面的內(nèi)點,知MP在上的射影不是l的垂線,得l不垂直于面MNP.在圖④中,平面垂直平分線段MN,故l⊥MN.又l在左側(cè)面的射影(即側(cè)面正方形的一條對角線)與MP垂直,從而l⊥MP,故l⊥面MNP.在圖⑤中,點N在平面上的射影是對角線l的中點,點M、P在平面上的射影分別是上、下底面對角線的4分點,三個射影同在一條直線上,且l與這一直線垂直.從而l⊥面MNP.至此,得①④⑤為本題答案.12、【解題分析】
過作于,設,運用勾股定理和三角形的面積公式,計算可得所求值.【題目詳解】過作于,設,,,,又,可得,即有,可得的面積為.故答案為.【題目點撥】本題考查解三角形,考查勾股定理的運用,以及三角形的面積公式,考查化簡運算能力,屬于基礎題.13、【解題分析】
利用反三角函數(shù)的定義,解方程即可.【題目詳解】因為函數(shù),由反三角函數(shù)的定義,解方程,得,所以.故答案為:【題目點撥】本題考查了反三角函數(shù)的定義,屬于基礎題.14、【解題分析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【題目詳解】由約束條件作出可行域,如圖所示,化目標函數(shù)為,由圖可得,當直線過時,直線在軸上的截距最大,所以有最大值為.故答案為1.【題目點撥】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎題.15、①②④【解題分析】
根據(jù)線面平行和線面垂直的判定定理,以及面面垂直的判定定理和性質(zhì)分別進行判斷即可.【題目詳解】①當為棱上的一中點時,此時也為棱上的一個中點,此時//,滿足//平面,故①正確;②連結(jié),則平面,因為平面,所以平面平面,故②正確;③平面,不可能存在點,使得平面,故③錯誤;④四棱錐的體積等于,設正方體的棱長為1.∵無論、在何點,三角形的面積為為定值,三棱錐的高,保持不變,三角形的面積為為定值,三棱錐的高為,保持不變.∴四棱錐的體積為定值,故④正確.故答案為①②④.【題目點撥】本題主要考查空間直線和平面平行或垂直的位置關系的判斷,解答本題的關鍵正確利用分割法求空間幾何體的體積的方法,綜合性較強,難度較大.16、3【解題分析】
由M在AB邊所在直線上,則,又,然后將,都化為,即可解出答案.【題目詳解】因為M在直線AB上,所以可設,
可得,即,又,則由與不共線,所以,解得.故答案為:3【題目點撥】本題考查向量的減法和向量共線的利用,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解題分析】
(1)取的中點,連接、,可得四邊形為平行四邊形,得到,由線面平行的判定可得平面;(2)連接交于,則為的中點,結(jié)合為的中點,得,可得(或其補角)為異面直線和所成角,在正四棱錐中,由為的中點,且,可得,設,求解三角形可得異面直線和所成角的余弦值.【題目詳解】(1)取的中點,連接、,是的中點,且,在正四棱錐中,底面為正方形,且,又為的中點,且,且,則四邊形為平行四邊形,,平面,平面,平面;(2)連接交于,則為的中點,又為的中點,,又,(或其補角)為異面直線和所成角,在正四棱錐中,由為的中點,且,,設,則,,,則,因此,異面直線和所成角的余弦值為.【題目點撥】本題考查直線與平面平行的判定,考查空間想象能力與思維能力,訓練了異面直線所成角的求法,是中檔題.18、(1)300人;(2)【解題分析】
(1)由頻數(shù)分布表可得40人中成績不低于90分的學生人數(shù)為15人,由此可計算出該年級成績不低于90分的學生人數(shù);(2)根據(jù)題意寫出所有的基本事件,確定基本事件的個數(shù),即可計算出恰好選中一名男生一名女生的概率.【題目詳解】⑴40名學生中成績不低于90分的學生人數(shù)為15人;所以估計該年級成績不低于90分的學生人數(shù)為⑵分別記男生為1,2,3號,女生為4,5號,從中選出2名學生,有如下基本事件(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)因此,共有10個基本事件,上述10個基本事件發(fā)生的可能性相同,且只有6個基本事件是選中一名男生一名女生(記為事件),即(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)∴【題目點撥】本題考查頻率分布表以及古典概型的概率計算,,考查學生的運算能力,屬于基礎題.19、(1)f(x)=1x﹣1﹣x(2)(﹣∞,2]∪{4}(1)存在正整數(shù)n,使不得式f(2x)≥(n﹣1)f(x)對一切x∈[﹣1,1]均成立,且n的值為1,2,1【解題分析】
(1)利用奇函數(shù)的性質(zhì)及f(1)列出方程組,解方程組即可得到函數(shù)解析式;
(2)結(jié)合函數(shù)單調(diào)性和函數(shù)的奇偶性脫去符號,轉(zhuǎn)化為二次函數(shù)的零點分布求解;
(1)分離得,由,得到的范圍,由此得出結(jié)論.的范圍【題目詳解】(1)由題意,,解得,∴f(x)=1x﹣1﹣x;(2)由指數(shù)函數(shù)的性質(zhì)可知,函數(shù)f(x)=1x﹣1﹣x為R上的增函數(shù),故方程f(91)+f(1﹣1mx﹣2)=0即為,即故g(x)=2mx2﹣(4+m)x+2=0在區(qū)間[0,1]內(nèi)只有一個解,①當m=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甘肅省天水市清水縣多校聯(lián)考2025-2026學年高一上學期1月期末考試地理試卷(含答案)
- 2026屆高三生物二輪復習課件:選擇題強化練 4.遺傳的基本規(guī)律與伴性遺傳
- 化工企業(yè)冬季培訓課件
- 2026安徽合肥工業(yè)大學管理學院管理學院醫(yī)療機器人與智慧醫(yī)療健康管理團隊科研助理招聘3人備考考試試題及答案解析
- 2026新疆前海集團有限責任公司招聘1人備考考試試題及答案解析
- 2026年上半年黑龍江事業(yè)單位聯(lián)考哈爾濱市招聘592人參考考試題庫及答案解析
- 2026江蘇蘇州人才發(fā)展有限公司招聘2人(一)備考考試題庫及答案解析
- 2026四川通發(fā)廣進人力資源管理咨詢有限公司AI數(shù)據(jù)標注員(第三批)招聘備考考試題庫及答案解析
- 2026四川華豐科技股份有限公司招聘法務風控管理崗位1人備考考試試題及答案解析
- 2026云南昆明市公共交通有限責任公司總部職能部門員工遴選48人備考考試題庫及答案解析
- 安全生產(chǎn)考試點管理制度(3篇)
- 孕婦尿液捐獻協(xié)議書
- 2025年立體倉庫維護服務合同
- BIM技術在建筑施工環(huán)境管理中的應用
- 2025全國高考Ⅰ卷第16題說題比賽課件-2026屆高三數(shù)學二輪復習
- 快消品市場調(diào)研分析報告模板
- 裝修保護電梯施工技術交底
- 社保專員工作述職報告
- DB15∕T 2385-2021 草原退化評價技術規(guī)程
- 焦化廠儀表工崗位考試試卷及答案
- 餐廳充值服務合同范本
評論
0/150
提交評論