版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
工程可靠度選講讀書(shū)報(bào)告【摘要】工程結(jié)構(gòu)在施工建造及使用過(guò)程中,需要承受設(shè)備、人群、車(chē)輛等荷載的作用以及風(fēng)、雨、雪等自然環(huán)境的作用;同時(shí),工程結(jié)構(gòu)還有建造費(fèi)用高和使用周期長(zhǎng)的特點(diǎn),工程結(jié)構(gòu)的平安可靠與否,不但影響著社會(huì)生產(chǎn)實(shí)踐,而且還關(guān)系到人民的生命和財(cái)產(chǎn)平安。因此,工程結(jié)構(gòu)應(yīng)要求具有一定的可靠性,才能保證結(jié)構(gòu)在規(guī)定的使用期內(nèi)能夠滿(mǎn)足設(shè)計(jì)要求的各項(xiàng)使用功能。工程結(jié)構(gòu)可靠度概念的引入使工程設(shè)計(jì)及校驗(yàn)從以經(jīng)驗(yàn)指導(dǎo)為主的主觀方法轉(zhuǎn)向了以概率論為根底的極限狀態(tài)設(shè)計(jì)方法。結(jié)構(gòu)可靠度理論是處理結(jié)構(gòu)不確定性、進(jìn)行結(jié)構(gòu)性能評(píng)估的有力工具?,F(xiàn)有根本的結(jié)構(gòu)可靠度計(jì)算方法可分為一次二階矩法、蒙特卡羅法和局部高次高階矩方法。一次二階矩法可以方便用于功能函數(shù)為顯式表達(dá)的情況,但對(duì)于可靠性要求較高的結(jié)構(gòu),其計(jì)算精度有時(shí)不能滿(mǎn)足工程需要。蒙特卡羅法可應(yīng)用于隱式功能函數(shù)情況下可靠度的計(jì)算,但該法往往需借助大量的樣本試驗(yàn),計(jì)算效率很低。本文主要介紹結(jié)構(gòu)可靠度的開(kāi)展過(guò)程、結(jié)構(gòu)可靠度的根本概念以及結(jié)構(gòu)可靠度的常用計(jì)算方法?!娟P(guān)鍵詞】:工程結(jié)構(gòu)、可靠度、開(kāi)展過(guò)程、根本概念、常用計(jì)算方法1結(jié)構(gòu)可靠度理論的演變和開(kāi)展結(jié)構(gòu)工程的建造耗資巨大,一旦失效不僅會(huì)造成結(jié)構(gòu)本身和人民生命財(cái)產(chǎn)的巨大損失,還往往產(chǎn)生難以估量的次生災(zāi)害和附加損失,所以工程結(jié)構(gòu)的平安性歷來(lái)是工程設(shè)計(jì)中的重大問(wèn)題。結(jié)構(gòu)可靠度理論的研究,起源于對(duì)結(jié)構(gòu)設(shè)計(jì)、施工和使用過(guò)程中存在的不確定性的認(rèn)識(shí),以及結(jié)構(gòu)設(shè)計(jì)風(fēng)險(xiǎn)決策理論中計(jì)算結(jié)構(gòu)失效概率的需要。結(jié)構(gòu)可靠度理論最開(kāi)始主要是圍繞飛機(jī)的平安性進(jìn)行研究。第二次世界大戰(zhàn)中,德國(guó)曾用可靠度方法分析過(guò)火箭,美國(guó)也對(duì)B-29飛機(jī)進(jìn)行過(guò)可靠度研究。早在1911年,匈牙利布達(dá)佩斯的卡欽奇〔Качинци〕提出用統(tǒng)計(jì)數(shù)學(xué)研究荷載及材料強(qiáng)度。1928年蘇聯(lián)哈奇諾夫〔Н.А.Хациалов〕、1935年斯特列里茨基〔Н.С.Стрелецкий〕等人相繼發(fā)表了這方面的文章。1946年,美國(guó)的弗羅伊詹特〔〕發(fā)表了題為《結(jié)構(gòu)的平安》的研究論文,開(kāi)始較為集中的討論結(jié)構(gòu)平安度問(wèn)題,自此使人們充分意識(shí)到實(shí)際工程的隨機(jī)因素,將概率分析和概率設(shè)計(jì)的思想引入實(shí)際工程。1947年,蘇聯(lián)的爾然尼欽(А.Р.Ржанцин)提出一次二階矩理論的根本概念和計(jì)算結(jié)構(gòu)失效概率的方法,爾然尼欽在1954年出版的《考慮材料塑性的結(jié)構(gòu)計(jì)算》一書(shū)中已明確提出了失效概率與平安系數(shù)的關(guān)系,給出了與失效概率相對(duì)應(yīng)的平安指標(biāo)的計(jì)算公式。50年代以后,前蘇聯(lián)、歐洲、北美等都在可靠度理論方面開(kāi)展了研究工作,取得了長(zhǎng)足的進(jìn)展。50年代伊始,美國(guó)國(guó)防部專(zhuān)門(mén)成立了可靠度研究機(jī)構(gòu)〔AGREE〕,并對(duì)一系列可靠度問(wèn)題進(jìn)行了比擬系統(tǒng)的研究,促進(jìn)了空間研究方案的實(shí)施。這一階段是可靠度理論開(kāi)展的根底階段。1963年以后,基于概率論的平安度理論得到了較快的開(kāi)展,逐步從理論研究步入工程應(yīng)用,并為設(shè)計(jì)標(biāo)準(zhǔn)所采用。1963年的美國(guó)標(biāo)準(zhǔn)和1964年的歐洲標(biāo)準(zhǔn)都有基于概率統(tǒng)計(jì)的平安度條文。我國(guó)60年代初公布的第一批設(shè)計(jì)標(biāo)準(zhǔn)也采用了有數(shù)理統(tǒng)計(jì)依據(jù)的分項(xiàng)系數(shù)法。這一階段是結(jié)構(gòu)可靠度研究的大開(kāi)展時(shí)期。美國(guó)的康乃爾〔〕在爾然尼欽工作的根底上,于1969年提出了與結(jié)構(gòu)失效概率相聯(lián)系的可靠度指標(biāo)作為衡量結(jié)構(gòu)平安度的一種統(tǒng)一數(shù)量指標(biāo),并建立了結(jié)構(gòu)可靠度的二階矩模式。1971年加拿大的林德〔〕提出了分項(xiàng)系數(shù)的概念,將可靠度指標(biāo)表達(dá)成設(shè)計(jì)人員習(xí)慣采用的分項(xiàng)系數(shù)形式。這些工作都加速了結(jié)構(gòu)可靠度方法的實(shí)用化。1976年,國(guó)際平安度聯(lián)合委員會(huì)〔JCSS〕推薦了拉克維茨〔Rackwitz〕和菲斯特〔Fiessler〕等人提出的通過(guò)“當(dāng)量正態(tài)化〞方法以考慮隨機(jī)變量實(shí)際分布的二階矩模式,也稱(chēng)為JC法,解決了隨機(jī)變量在非正態(tài)分布情況下的結(jié)構(gòu)可靠度的計(jì)算問(wèn)題。此后,結(jié)構(gòu)可靠度理論和方法研究開(kāi)始進(jìn)入了實(shí)用階段。20世紀(jì)70年代以來(lái),國(guó)際上以概率論和數(shù)理統(tǒng)計(jì)為根底的結(jié)構(gòu)可靠度理論在土木工程領(lǐng)域逐步進(jìn)入了實(shí)用階段。例如,加拿大分別于1975年和1979年率先公布了基于可靠度的房屋建筑設(shè)計(jì)標(biāo)準(zhǔn)和公路橋梁結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn);1977年前聯(lián)邦德國(guó)編制了《確定建筑物平安度的根底》,并以此作為編制其它標(biāo)準(zhǔn)的根本依據(jù);1978年北歐五國(guó)的建筑委員會(huì)提出了《結(jié)構(gòu)荷載與平安度設(shè)計(jì)規(guī)程》;1980年美國(guó)國(guó)家標(biāo)準(zhǔn)局提出了《基于概率的荷載準(zhǔn)那么》;1982年英國(guó)在BS5400橋梁設(shè)計(jì)標(biāo)準(zhǔn)中引入了結(jié)構(gòu)可靠度理論的內(nèi)容。我國(guó)結(jié)構(gòu)可靠度理論的研究相對(duì)起步較晚。從50年代開(kāi)始,我國(guó)有關(guān)高等院校和科研單位開(kāi)展了極限狀態(tài)法的研究和討論,并用數(shù)理統(tǒng)計(jì)方法研究荷載、材料強(qiáng)度的概率分布,確定超載系數(shù)及材料〔鋼筋、混凝土〕強(qiáng)度勻質(zhì)系數(shù)。60年代初,相關(guān)部門(mén)組織了航空及機(jī)械方面的可靠性研究隊(duì)伍。在工程結(jié)構(gòu)方面,以中國(guó)土木工程學(xué)會(huì)為主,廣泛開(kāi)展過(guò)平安度問(wèn)題的討論,當(dāng)時(shí)的《土木工程學(xué)報(bào)》發(fā)表過(guò)不少這方面的論文,這些成果已局部地納入了60年代初公布的結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn)中。我國(guó)雖然直到20世紀(jì)70年代中期才開(kāi)始在建筑結(jié)構(gòu)領(lǐng)域開(kāi)展結(jié)構(gòu)可靠度理論和應(yīng)用的研究工作,但在工程結(jié)構(gòu)可靠性研究的開(kāi)展過(guò)程中進(jìn)行了大量的理論研究、資料收集和數(shù)據(jù)實(shí)測(cè)工作,而且在總結(jié)了我國(guó)工程實(shí)踐經(jīng)驗(yàn),并借鑒了國(guó)際標(biāo)準(zhǔn)《結(jié)構(gòu)可靠性總原那么》及征求了全國(guó)有關(guān)單位意見(jiàn)的根底上,經(jīng)過(guò)各方多年的協(xié)同努力,于1992年正式公布了適用于全國(guó)的《工程結(jié)構(gòu)可靠度設(shè)計(jì)統(tǒng)一標(biāo)準(zhǔn)》〔GB50216—94〕等6個(gè)統(tǒng)一標(biāo)準(zhǔn)。在“統(tǒng)一標(biāo)準(zhǔn)〞的指導(dǎo)下,對(duì)建筑、水利等各專(zhuān)業(yè)結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn)進(jìn)行了大規(guī)模的修訂或編制,結(jié)構(gòu)設(shè)計(jì)方法也從原標(biāo)準(zhǔn)的以經(jīng)驗(yàn)為主的平安系數(shù)法轉(zhuǎn)化為新標(biāo)準(zhǔn)的以概率分析為根底的極限狀態(tài)設(shè)計(jì)方法。目前,這項(xiàng)工作的規(guī)模和深度已超過(guò)了世界上一些先進(jìn)國(guó)家,大大提高了我國(guó)結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn)的科學(xué)水平,使我國(guó)工程結(jié)構(gòu)設(shè)計(jì)標(biāo)準(zhǔn)躋身于世界先進(jìn)行列。近年來(lái),我國(guó)在結(jié)構(gòu)可靠度研究方面取得的一系列豐碩成果,標(biāo)志著我國(guó)在理論研究和工程應(yīng)用方面均已提高到一個(gè)新的水平,躋身國(guó)際領(lǐng)先水平的行列。從20世紀(jì)30年代開(kāi)始研究結(jié)構(gòu)可靠度理論到現(xiàn)在,幾十年來(lái),經(jīng)過(guò)各國(guó)科學(xué)家的不懈努力,目前,結(jié)構(gòu)可靠度的理論和方法有了很大的開(kāi)展,其主要分析計(jì)算方法有一次二階矩法、蒙特卡羅法和局部高次高階矩方法等等。2結(jié)構(gòu)可靠度的根本概念影響結(jié)構(gòu)可靠度的因素很多,從工程背景來(lái)分類(lèi),不確定因素表達(dá)在以下幾個(gè)方面:〔1〕材料物理力學(xué)參數(shù)和幾何尺寸的不確定性。對(duì)于人造的結(jié)構(gòu)材料,由于制造環(huán)境、技術(shù)條件和材料的多相特征等因素的影響,它們的彈性模量、泊松比、密度以及幾何尺寸〔如梁、柱的長(zhǎng)度、橫截面尺寸、板的厚度等〕等都具有不確定性。而對(duì)于自然的巖土體材料,由于巖土體介質(zhì)自身性質(zhì)和結(jié)構(gòu)的不均勻性,其不確定性程度往往更大?!?〕作用荷載的不確定性。結(jié)構(gòu)在施工和使用期間受到各種可能的作用,如自重、溫度變化、地震、外荷載和外加變形等,這些作用均具有不確定性?!?〕統(tǒng)計(jì)所帶來(lái)的不確定性。由于人們對(duì)工程材料性質(zhì)參數(shù)的掌握,一般是通過(guò)現(xiàn)場(chǎng)取樣,實(shí)驗(yàn)室測(cè)試,然后統(tǒng)計(jì)得到的。這些過(guò)程本身的不確定性使得結(jié)果不可防止的帶有不確定性?!?〕模型不準(zhǔn)確引起的不確定性。工程結(jié)構(gòu)的描述模型總是在一定的簡(jiǎn)化和假定條件下的理想模型,這些假定常常使分析計(jì)算模型與工程結(jié)構(gòu)的客觀實(shí)際存在著一定的偏差?;诓煌暮?jiǎn)化和假定的模型,往往會(huì)造成不同的計(jì)算分析結(jié)果,從而給分析帶來(lái)不確定性。〔5〕初始條件和邊界條件的不確定性。結(jié)構(gòu)是以可靠和失效兩種狀態(tài)存在的。在結(jié)構(gòu)可靠度的分析中,為了描述結(jié)構(gòu)的工作狀態(tài),必須明確確定結(jié)構(gòu)平安和失效的界限,即結(jié)構(gòu)的極限狀態(tài)。我國(guó)《工程結(jié)構(gòu)可靠度設(shè)計(jì)統(tǒng)一標(biāo)準(zhǔn)》〔GB50153-92〕對(duì)結(jié)構(gòu)極限狀態(tài)的定義為:整個(gè)結(jié)構(gòu)或結(jié)構(gòu)的一局部超過(guò)某一特定狀態(tài)就不能滿(mǎn)足設(shè)計(jì)規(guī)定的某一功能要求,此特定狀態(tài)就為該功能的極限狀態(tài)。顯然,結(jié)構(gòu)的極限狀態(tài)是結(jié)構(gòu)由可靠狀態(tài)轉(zhuǎn)向失效狀態(tài)的一個(gè)臨界狀態(tài),是判斷結(jié)構(gòu)是否滿(mǎn)足預(yù)定功能要求的標(biāo)志"根據(jù)不同的功能要求,結(jié)構(gòu)的極限狀態(tài)可分為三類(lèi):〔1〕承載能力極限狀態(tài)。假設(shè)結(jié)構(gòu)或構(gòu)件到達(dá)最大承載能力或到達(dá)不適于繼續(xù)承載的變形,那么認(rèn)為其到達(dá)承載能力極限狀態(tài)?!?〕正常使用極限狀態(tài)。如結(jié)構(gòu)或構(gòu)件到達(dá)正常使用或耐久性的某項(xiàng)規(guī)定限值,那么認(rèn)為其到達(dá)正常使用極限狀態(tài)。〔3〕整體性極限狀態(tài)(抗連續(xù)破壞極限狀態(tài))。結(jié)構(gòu)由于地震、爆炸、火災(zāi)、撞擊等事故產(chǎn)生的損壞到達(dá)與初始起因不相稱(chēng)的程度限值,即結(jié)構(gòu)由于局部損壞而到達(dá)其余局部將發(fā)生連續(xù)破壞狀態(tài)的限值。一般情況下,結(jié)構(gòu)的極限狀態(tài)方程寫(xiě)成:〔2.1〕式中,——代表結(jié)構(gòu)的功能;——稱(chēng)為結(jié)構(gòu)的功能函數(shù);——為用于描述結(jié)構(gòu)功能的隨機(jī)變量。結(jié)構(gòu)的可靠度可以用結(jié)構(gòu)能夠完成預(yù)定功能的概率來(lái)表達(dá):〔2.2〕如果結(jié)構(gòu)不能完成預(yù)定的功能,那么稱(chēng)相應(yīng)的概率為結(jié)構(gòu)的失效概率,用來(lái)表示。結(jié)構(gòu)的可靠概率和失效概率是互補(bǔ)的,滿(mǎn)足:〔2.3〕如果極限狀態(tài)方程(2.1)中根本變量的聯(lián)合概率密度函數(shù)為,那么結(jié)構(gòu)的失效概率為:〔2.4〕直角坐標(biāo)系中,對(duì)功能函數(shù)為的結(jié)構(gòu)狀態(tài)示意圖見(jiàn)圖2.1。圖2.1結(jié)構(gòu)狀態(tài)示意圖計(jì)算失效概率最理想的方法是由上式積分精確求解。然而,除了少數(shù)情況〔例如極限狀態(tài)方程為線性方程,且根本變量的概率都服從正態(tài)分布〕,在一般情況下,如果要直接利用上式來(lái)求解,由于需要通過(guò)多維積分,數(shù)學(xué)處理十分復(fù)雜,因此計(jì)算工作量也非常龐大,有時(shí)甚至難于獲得問(wèn)題的解答。考慮到直接應(yīng)用數(shù)值積分方法計(jì)算結(jié)構(gòu)失效概率的困難性,工程中多采用近似方法,為此引入了結(jié)構(gòu)可靠指標(biāo)的概念。對(duì)于結(jié)構(gòu)功能函數(shù)隨機(jī)變量服從正態(tài)分布的情形,結(jié)構(gòu)的失效概率為:〔2.5〕式中,為標(biāo)準(zhǔn)正態(tài)分布函數(shù)值。與之間存在一一對(duì)應(yīng)的關(guān)系,因此可以作為衡量結(jié)構(gòu)可靠性的一個(gè)指標(biāo),稱(chēng)為可靠指標(biāo)。對(duì)于功能函數(shù)不服從正態(tài)分布的情形,在應(yīng)用可靠度的概念來(lái)衡量結(jié)構(gòu)的可靠性時(shí),需要將其等效為服從某個(gè)正態(tài)分布。因此,對(duì)于服從正態(tài)分布或等效服從正態(tài)分布的功能函數(shù),可以定義可靠指標(biāo)的表達(dá)式為:〔2.6〕在概率密度曲線坐標(biāo)中,服從正態(tài)分布的功能函數(shù)的平均值即曲線的峰值點(diǎn)到結(jié)構(gòu)功能函數(shù)等于0點(diǎn)的距離〔見(jiàn)圖2.2〕,可用標(biāo)準(zhǔn)差的倍數(shù)表示,這個(gè)倍數(shù)就是二階矩模式中的可靠指標(biāo)。圖中陰影局部的面積為結(jié)構(gòu)的失效概率。而如果將結(jié)構(gòu)功能函數(shù)隨機(jī)變量線性變換為一個(gè)標(biāo)準(zhǔn)正態(tài)隨機(jī)變量,那么在新的概率密度曲線坐標(biāo)中,可靠指標(biāo)為坐標(biāo)原點(diǎn)到極限狀態(tài)曲面的距離。將這一幾何概念進(jìn)行推廣,可將可靠指標(biāo)定義為標(biāo)準(zhǔn)正態(tài)空間內(nèi)〔隨機(jī)變量滿(mǎn)足平均值,標(biāo)準(zhǔn)差〕坐標(biāo)原點(diǎn)到極限狀態(tài)曲面的最短距離,原點(diǎn)向曲面垂線的垂足為驗(yàn)算點(diǎn)〔見(jiàn)圖2.3〕。極限狀態(tài)曲面為結(jié)構(gòu)功能函數(shù)等于0的曲面,這樣坐標(biāo)原點(diǎn)到極限狀態(tài)曲面的最短距離只有一個(gè),因此據(jù)此定義的結(jié)構(gòu)可靠指標(biāo)是唯一的。圖2.2正態(tài)功能函數(shù)概率密度曲線圖2.3三個(gè)正態(tài)隨機(jī)變量的極限狀態(tài)平面與設(shè)計(jì)驗(yàn)算點(diǎn)3結(jié)構(gòu)可靠度計(jì)算常見(jiàn)方法MonteCarlo抽樣方法、一次二階矩方法以及局部高次高階矩方法為目前結(jié)構(gòu)可靠度計(jì)算中比擬常用和成熟的方法。下面分別加以簡(jiǎn)單介紹。3.1一次二階矩方法把計(jì)算結(jié)構(gòu)可靠度只需要用到隨機(jī)變量的一階、二階矩,并且只需考慮功能函數(shù)泰勒展開(kāi)式的一次項(xiàng)方法統(tǒng)稱(chēng)為一次二階矩方法。通常比擬常見(jiàn)的一次二階矩方法包括中心點(diǎn)法、驗(yàn)算點(diǎn)法〔JC法〕、映射變化法和實(shí)用分析法等。中心點(diǎn)法中心點(diǎn)法是結(jié)構(gòu)可靠度研究初期提出的一種方法。其根本思想是首先將非線性功能函數(shù)在隨機(jī)變量的平均值〔中心點(diǎn)〕處作泰勒級(jí)數(shù)展開(kāi)并保存至一次項(xiàng),然后近似計(jì)算功能函數(shù)的平均值和標(biāo)準(zhǔn)差??煽恐笜?biāo)直接用功能函數(shù)的平均值和標(biāo)準(zhǔn)差表示:〔3.1〕中心點(diǎn)法的最大特點(diǎn)是計(jì)算簡(jiǎn)便,不需進(jìn)行過(guò)多的數(shù)值計(jì)算。但也存在明顯的缺陷:不能考慮隨機(jī)變量的分布概型;將非線性功能函數(shù)在隨機(jī)變量的平均值處展開(kāi)不合理,隨機(jī)變量的平均值不一定在極限狀態(tài)曲面上;對(duì)有相同力學(xué)含義但不同數(shù)學(xué)表達(dá)式的極限狀態(tài)方程求得的結(jié)構(gòu)可靠度不同。因此,中心點(diǎn)法計(jì)算的結(jié)果比擬粗糙,一般常用于結(jié)構(gòu)可靠度計(jì)算精度要求不高的情況。驗(yàn)算點(diǎn)法〔JC法〕哈索弗爾〔Hasofer〕和林德〔Lind〕、拉克維茨〔Rackwitz〕和菲斯萊〔Fiessler〕、帕洛赫摩〔Paloheimo〕和漢拉斯〔Hannus〕等人提出了結(jié)構(gòu)可靠度計(jì)算的驗(yàn)算點(diǎn)法。驗(yàn)算點(diǎn)法將功能函數(shù)的線性Taylor展開(kāi)點(diǎn)選在失效面上,并且能考慮根本隨機(jī)變量的實(shí)際分布。驗(yàn)算點(diǎn)法的根本思路是:設(shè)為極限狀態(tài)面上一點(diǎn),即滿(mǎn)足〔3.2〕在處將極限狀態(tài)方程Taylor展開(kāi)并取至一次項(xiàng)得到,并計(jì)算出的均值和標(biāo)準(zhǔn)差,結(jié)構(gòu)的可靠度的表達(dá)式為:〔3.3〕驗(yàn)算點(diǎn)的表達(dá)式為:〔3.4〕式中,——表示第個(gè)隨機(jī)變量對(duì)整體標(biāo)準(zhǔn)差的相對(duì)影響,因此可稱(chēng)為靈敏系數(shù)。當(dāng)根本變量中含有非正態(tài)隨機(jī)變量時(shí),運(yùn)用驗(yàn)算點(diǎn)法須事先處理非正態(tài)變量,這里用當(dāng)量正態(tài)化法。當(dāng)量正態(tài)化條件要求在驗(yàn)算點(diǎn)處和的分布函數(shù)和概率密度函數(shù)分別對(duì)應(yīng)相等,即〔3.5.1〕〔3.5.1〕驗(yàn)算點(diǎn)法一般步驟:〔1〕選取設(shè)計(jì)驗(yàn)算點(diǎn)坐標(biāo)的初值,一般取,即;〔2〕計(jì)算靈敏系數(shù);〔3〕按公式〔3.2〕〔3.4〕求解值;〔4〕計(jì)算的新值;〔5〕重復(fù)第〔2〕步到第〔4〕步,只到兩次算得的值之差小于容許限值。驗(yàn)算點(diǎn)法的特點(diǎn)是能夠考慮非正態(tài)的隨機(jī)變量,可對(duì)可靠度進(jìn)行精度較高的近似計(jì)算,求得滿(mǎn)足極限狀態(tài)方程的“驗(yàn)算點(diǎn)〞設(shè)計(jì)值,因此是結(jié)構(gòu)可靠度計(jì)算中采用最為廣泛的方法之一。映射變換法映射變換法的原理就是利用概率分布函數(shù)值相等的映射,將非正態(tài)分布隨機(jī)變量變換為標(biāo)準(zhǔn)正態(tài)隨機(jī)變量。對(duì)每一個(gè)變量作變換〔3.6〕即〔3.7〕〔3.8〕將映射成標(biāo)準(zhǔn)正態(tài)變量。其余算法與驗(yàn)算點(diǎn)法類(lèi)似。實(shí)用分析法在實(shí)用分析法中,對(duì)根本變量中的非正態(tài)分布變量,按驗(yàn)算點(diǎn)處對(duì)應(yīng)的或有相同分為值的條件,代以當(dāng)量正態(tài)分布變量,并要求和的均值相等。其余算法參照驗(yàn)算點(diǎn)法。實(shí)用分析法比驗(yàn)算點(diǎn)法較為簡(jiǎn)單,但精度差不多。3.2MonteCarlo抽樣法直接通過(guò)隨機(jī)抽樣對(duì)結(jié)構(gòu)可靠度進(jìn)行模擬是結(jié)構(gòu)可靠度分析最根本的一種方法,它幾乎不需要做任何前期準(zhǔn)備工作和特殊處理。MonteCarlo抽樣方法是以數(shù)理統(tǒng)計(jì)原理為根底的。MonteCarlo方法的根本思路是:對(duì)根本變量進(jìn)行次隨機(jī)抽樣,通過(guò)對(duì)功能函數(shù)的計(jì)算,得到個(gè)值,如果個(gè)值中存在個(gè),那么結(jié)構(gòu)的失效概率就表示為〔3.9〕該方法的關(guān)鍵在于:隨機(jī)抽樣數(shù)和隨機(jī)抽樣方法確實(shí)定。由概率論知道,采用頻率來(lái)估算概率的根本前提是隨機(jī)抽樣數(shù)必須足夠大,否那么達(dá)不到精度要求。而抽樣數(shù)太大必然增加了工作量,因而直接的MonteCarlo模擬只應(yīng)用于結(jié)構(gòu)可靠度不高的情況。 MonteCarlo方法避開(kāi)了結(jié)構(gòu)可靠度分析中的數(shù)學(xué)困難,不需要考慮功能函數(shù)的非線性和極限狀態(tài)曲面的復(fù)雜性,且直觀、精確、通用性強(qiáng);缺點(diǎn)是計(jì)算
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 河南省駐馬店市汝南縣雙語(yǔ)學(xué)校、清華園學(xué)校2026屆九年級(jí)上學(xué)期1月期末考試歷史試卷(含答案)
- 2025年吉安職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)帶答案解析
- 2024年磁縣幼兒園教師招教考試備考題庫(kù)附答案解析(奪冠)
- 2025年交城縣幼兒園教師招教考試備考題庫(kù)含答案解析(奪冠)
- 2024年通化鋼鐵公司職工大學(xué)馬克思主義基本原理概論期末考試題含答案解析(必刷)
- 2024年湖北財(cái)稅職業(yè)學(xué)院馬克思主義基本原理概論期末考試題及答案解析(必刷)
- 2025年隆德縣招教考試備考題庫(kù)帶答案解析
- 2025年四川西南航空職業(yè)學(xué)院馬克思主義基本原理概論期末考試模擬題帶答案解析
- 2025年慶安縣幼兒園教師招教考試備考題庫(kù)及答案解析(奪冠)
- 2025年廣州華南商貿(mào)職業(yè)學(xué)院馬克思主義基本原理概論期末考試模擬題含答案解析(必刷)
- DL-T5706-2014火力發(fā)電工程施工組織設(shè)計(jì)導(dǎo)則
- GA/T 1466.3-2023智能手機(jī)型移動(dòng)警務(wù)終端第3部分:檢測(cè)方法
- 《ISO∕IEC 42001-2023信息技術(shù)-人工智能-管理體系》解讀和應(yīng)用指導(dǎo)材料(雷澤佳2024A0)
- 勞務(wù)投標(biāo)技術(shù)標(biāo)
- 2023年電池PACK工程師年度總結(jié)及下年規(guī)劃
- 供電公司變電運(yùn)維QC小組縮短變電站母排型接地線裝設(shè)時(shí)間成果匯報(bào)書(shū)
- 固體廢棄物分類(lèi)清單
- RB/T 169-2018有機(jī)產(chǎn)品(植物類(lèi))認(rèn)證風(fēng)險(xiǎn)評(píng)估管理通用規(guī)范
- RB/T 039-2020檢測(cè)實(shí)驗(yàn)室儀器設(shè)備計(jì)量溯源結(jié)果確認(rèn)指南
- GB/T 35452-2017再生粘合軟質(zhì)聚氨酯泡沫塑料
- 無(wú)驗(yàn)潮水深測(cè)量系統(tǒng)軟件操作及維護(hù)說(shuō)明書(shū)-A4
評(píng)論
0/150
提交評(píng)論