版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
陜西省西安一中2023年數(shù)學(xué)高一上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請(qǐng)將正確答案涂在答題卡上.)1.在空間四邊形ABCD中,AB=BC,AD=CD,E為對(duì)角線AC的中點(diǎn),下列判斷正確的是()A平面ABC⊥平面BED B.平面ABC⊥平面ABDC.平面ABC⊥平面ADC D.平面ABD⊥平面BDC2.?dāng)?shù)學(xué)可以刻畫現(xiàn)實(shí)世界中的和諧美,人體結(jié)構(gòu)、建筑物、國旗、繪畫、優(yōu)選法等美的共性與黃金分割相關(guān).黃金分割常數(shù)也可以表示成,則()A. B.C. D.3.已知?jiǎng)t當(dāng)最小時(shí)的值時(shí)A.﹣3 B.3C.﹣1 D.14.是定義在上的偶函數(shù),在上單調(diào)遞增,,,則下列不等式成立的是()A. B.C. D.5.若冪函數(shù)f(x)=xa圖象過點(diǎn)(3,9),設(shè),,t=-loga3,則m,n,t的大小關(guān)系是()A. B.C. D.6.已知,則下列選項(xiàng)中正確的是()A. B.C. D.7.已知函數(shù),若方程有四個(gè)不同的解,,,,且,則的取值范圍是()A. B.C. D.8.棱長為1的正方體可以在一個(gè)棱長為的正四面體的內(nèi)部任意地轉(zhuǎn)動(dòng),則的最小值為A. B.C. D.9.已知函數(shù)與的圖像關(guān)于對(duì)稱,則()A.3 B.C.1 D.10.已知.則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.函數(shù)的單調(diào)遞增區(qū)間是()A. B.C. D.12.角的終邊過點(diǎn),則等于A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知是銳角,且sin=,sin=_________.14.給出下列五個(gè)論斷:①;②;③;④;⑤.以其中的兩個(gè)論斷作為條件,一個(gè)論斷作為結(jié)論,寫出一個(gè)正確的命題:___________.15.已知函數(shù),若、、、、滿足,則的取值范圍為______.16.______.三、解答題(本大題共6個(gè)小題,共70分。解答時(shí)要求寫出必要的文字說明、證明過程或演算步驟。)17.已知,函數(shù).(1)當(dāng)時(shí),解不等式;(2)若關(guān)于的方程的解集中恰有兩個(gè)元素,求的取值范圍;(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的和不大于,求的取值范圍.18.已知函數(shù)f(x)=coscos-sinxcosx+(1)求函數(shù)f(x)的最小正周期和最大值;(2)求函數(shù)f(x)單調(diào)遞增區(qū)間19.已知函數(shù).(1)若為偶函數(shù),求實(shí)數(shù)m的值;(2)當(dāng)時(shí),若不等式對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍;(3)當(dāng)時(shí),關(guān)于x的方程在區(qū)間上恰有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.20.某港口水深y(米)是時(shí)間t(0≤t≤24,單位:小時(shí))的函數(shù),下面是水深數(shù)據(jù):t(小時(shí))03691215182124y(米)10.013.09.97.010013.010.17.010.0據(jù)上述數(shù)據(jù)描成的曲線如圖所示,該曲線可近似的看成函數(shù)的圖象(1)試根據(jù)數(shù)據(jù)表和曲線,求的解析式;(2)一般情況下,船舶航行時(shí)船底與海底的距離不小于4.5米是安全的,如果某船的吃水度(船底與水面的距離)為7米,那么該船在什么時(shí)間段能夠安全進(jìn)港?21.如圖,正方形的邊長為,,分別為邊和上的點(diǎn),且的周長為2.(1)求證:;(2)求面積的最小值.22.函數(shù)的部分圖象如圖所示.(1)求函數(shù)f(x)的解析式;(2)當(dāng)x∈[-2,2]時(shí),求f(x)的值域.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請(qǐng)將正確答案涂在答題卡上.)1、A【解析】利用面面垂直的判定定理逐一判斷即可【詳解】連接DE,BE.因?yàn)镋為對(duì)角線AC的中點(diǎn),且AB=BC,AD=CD,所以DE⊥AC,BE⊥AC因?yàn)镈E∩BE=E,所以AC⊥面BDEAC?面ABC,所以平面ABC⊥平面BED,故選A【點(diǎn)睛】本題主要考查了面面垂直的判定,要求熟練掌握面面垂直的判定定理2、A【解析】利用同角三角函數(shù)平方關(guān)系,誘導(dǎo)公式,二倍角公式進(jìn)行求解.【詳解】故選:A3、B【解析】由題目已知可得:當(dāng)時(shí),的值最小故選4、C【解析】根據(jù)對(duì)數(shù)的運(yùn)算法則,得到,結(jié)合偶函數(shù)的定義以及對(duì)數(shù)函數(shù)的單調(diào)性,得到自變量的大小,根據(jù)函數(shù)在上的單調(diào)性,得到函數(shù)值的大小,得到選項(xiàng).【詳解】,而,因?yàn)槭嵌x在上的偶函數(shù),且在上單調(diào)遞增,所以,所以,故選:C.5、D【解析】由冪函數(shù)的圖象過點(diǎn)(3,9)求出a的值,再比較m、n、t的大小【詳解】冪函數(shù)f(x)=xa圖象過點(diǎn)(3,9),∴3a=9,a=2;,∴m>n>t故選D【點(diǎn)睛】本題考查了冪函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題6、A【解析】計(jì)算的取值范圍,比較范圍即可.【詳解】∴,,.∴.故選:A.7、D【解析】根據(jù)圖象可得:,,,.,則.令,,,而函數(shù).即可求解.【詳解】解:函數(shù),的圖象如下:根據(jù)圖象可得:若方程有四個(gè)不同的解,,,,且,則,,,.,,則.令,,,而函數(shù)在,單調(diào)遞增.所以,則.故選:D.【點(diǎn)睛】本題考查函數(shù)的圖象與性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合思想,考查運(yùn)算求解能力,求解時(shí)注意借助圖象分析問題,屬于中檔題.8、A【解析】由題意可知正方體的外接球?yàn)檎拿骟w的內(nèi)切球時(shí)a最小,此時(shí)R=,.9、B【解析】根據(jù)同底的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)互為反函數(shù)可解.【詳解】由題知是的反函數(shù),所以,所以.故選:B.10、A【解析】求解出成立的充要條件,再與分析比對(duì)即可得解.【詳解】,,則或,由得,由得,顯然,,所以“”是“”的充分不必要條件.故選:A【點(diǎn)睛】結(jié)論點(diǎn)睛:充分不必要條件的判斷:p是q的充分不必要條件,則p對(duì)應(yīng)集合是q對(duì)應(yīng)集合的真子集.11、B【解析】先求出函數(shù)的定義域,然后將復(fù)合函數(shù)分解為內(nèi)、外函數(shù),分別討論內(nèi)外函數(shù)的單調(diào)性,進(jìn)而根據(jù)復(fù)合函數(shù)單調(diào)性“同增異減”的原則,得到函數(shù)y=log3(x2-2x)的單調(diào)遞增區(qū)間【詳解】函數(shù)y=log5(x2-2x)的定義域?yàn)椋?∞,0)∪(2,+∞),令t=x2-2x,則y=log5t,∵y=log5t為增函數(shù),t=x2-2x在(-∞,0)上為減函數(shù),在(2,+∞)為增函數(shù),∴函數(shù)y=log5(x2-2x)的單調(diào)遞增區(qū)間為(2,+∞),故選B【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對(duì)數(shù)函數(shù)的單調(diào)性,其中復(fù)合函數(shù)單調(diào)性“同增異減”是解答本題的關(guān)鍵12、B【解析】由三角函數(shù)的定義知,x=-1,y=2,r==,∴sinα==.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】由誘導(dǎo)公式可求解.【詳解】由,而.故答案為:14、②③?⑤;③④?⑤;②④?⑤【解析】利用不等式的性質(zhì)和做差比較即可得到答案.【詳解】由②③?⑤,因?yàn)?,,則.由③④?⑤,由于,,則,所以.由②④?⑤,由于,且,則,所以.故答案為:②③?⑤;③④?⑤;②④?⑤15、【解析】設(shè),作出函數(shù)的圖象,可得,利用對(duì)稱性可得,由可求得,進(jìn)而可得出,利用二次函數(shù)的基本性質(zhì)可求得的取值范圍.【詳解】作出函數(shù)的圖象如下圖所示:設(shè),當(dāng)時(shí),,由圖象可知,當(dāng)時(shí),直線與函數(shù)的圖象有五個(gè)交點(diǎn),且點(diǎn)、關(guān)于直線對(duì)稱,可得,同理可得,由,可求得,所以,.因此,的取值范圍是.故答案為:.【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.16、【解析】首先利用乘法將五進(jìn)制化為十進(jìn)制,再利用“倒序取余法”將十進(jìn)制化為二進(jìn)制即可.【詳解】,根據(jù)十進(jìn)制化為二進(jìn)制“倒序取余法”如下:可得.故答案為:【點(diǎn)睛】本題考查了進(jìn)位制的轉(zhuǎn)化,在求解過程中,一般都是先把其它進(jìn)制轉(zhuǎn)化為十進(jìn)制,再用倒序取余法轉(zhuǎn)化為其它進(jìn)制,屬于基礎(chǔ)題.三、解答題(本大題共6個(gè)小題,共70分。解答時(shí)要求寫出必要的文字說明、證明過程或演算步驟。)17、(1);(2);(3).【解析】(1)當(dāng)a=1時(shí),利用對(duì)數(shù)函數(shù)的單調(diào)性,直接解不等式f(x)1即可;(2)化簡關(guān)于x的方程f(x)+2x=0,通過分離變量推出a的表達(dá)式,通過解集中恰有兩個(gè)元素,利用二次函數(shù)的性質(zhì),即可求a的取值范圍;(3)在R上單調(diào)遞減利用復(fù)合函數(shù)的單調(diào)性,求解函數(shù)的最值,∴令,化簡不等式,轉(zhuǎn)化為求解不等式的最大值,然后求得a的范圍【詳解】(1)當(dāng)時(shí),,∴,解得,∴原不等式的解集為.(2)方程,即為,∴,∴,令,則,由題意得方程在上只有兩解,令,,結(jié)合圖象可得,當(dāng)時(shí),直線和函數(shù)的圖象只有兩個(gè)公共點(diǎn),即方程只有兩個(gè)解∴實(shí)數(shù)的范圍.(3)∵函數(shù)在上單調(diào)遞減,∴函數(shù)在定義域內(nèi)單調(diào)遞減,∴函數(shù)在區(qū)間上最大值為,最小值為,∴,由題意得,∴恒成立,令,∴對(duì),恒成立,∵在上單調(diào)遞增,∴∴,解得,又,∴∴實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查函數(shù)的綜合應(yīng)用,復(fù)合函數(shù)的單調(diào)性以及指對(duì)復(fù)合型函數(shù)的最值的求法,利用換元法將指對(duì)復(fù)合型函數(shù)轉(zhuǎn)化為二次函數(shù)求最值是關(guān)鍵,考查轉(zhuǎn)化思想以及分類討論思想的應(yīng)用,屬于難題18、(1)最小正周期為T=π,最大值為(2)[kπ-58π,kπ【解析】(Ⅰ)函數(shù)的最小正周期為,函數(shù)的最大值為(II)由得函數(shù)的單調(diào)遞增區(qū)間為[kπ-5π19、(1)-1;(2);(3)【解析】(1)根據(jù)偶函數(shù)解得:m=-1,再用定義法進(jìn)行證明;(2)記,判斷出在上單增,列不等式組求出實(shí)數(shù)a的取值范圍;(3)先判斷出在R上單增且,令,把問題轉(zhuǎn)化為在上有兩根,令,,利用圖像有兩個(gè)交點(diǎn),列不等式求出實(shí)數(shù)m的取值范圍.【小問1詳解】定義域?yàn)镽.因?yàn)闉榕己瘮?shù),所以,即,解得:m=-1.此時(shí),所以所以偶函數(shù),所以m=-1.【小問2詳解】當(dāng)時(shí),不等式可化為:,即對(duì)任意恒成立.記,只需.因?yàn)樵谏蠁卧?,在上單增,所以在上單增,所以,所以,解得:,即?shí)數(shù)a的取值范圍為.【小問3詳解】當(dāng)時(shí),在R上單增,在R上單增,所以在R上單增且.則可化為.又因?yàn)樵赗上單增,所以,換底得:,即.令,則,問題轉(zhuǎn)化為在上有兩根,即,令,,分別作出圖像如圖所示:只需,解得:.即實(shí)數(shù)m的取值范圍為.【點(diǎn)睛】已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解20、(1);(2)至或至.【解析】(1)根據(jù)數(shù)據(jù),可得,由,可求,從而可求函數(shù)的表達(dá)式;(2)由題意,水深,即,從而可求t的范圍,即可得解;【詳解】解:(1)根據(jù)數(shù)據(jù),可得,,,,,函數(shù)的表達(dá)式為;(2)由題意,水深,即,,,,,1,,或,;所以,該船在至或至能安全進(jìn)港21、(1)證明見解析;(2).【解析】(1)補(bǔ)形得證明其與全等,從而得證.(2)引進(jìn)參數(shù),由已知建立參數(shù)變量之間的等量關(guān)系,再用方程根的判別式獲得變量最值,進(jìn)一步得到所求面積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鐵路車輛制修工風(fēng)險(xiǎn)評(píng)估與管理模擬考核試卷含答案
- 環(huán)己胺裝置操作工班組管理知識(shí)考核試卷含答案
- 搪瓷坯體制作工崗前崗位適應(yīng)能力考核試卷含答案
- 拉深工安全理論競賽考核試卷含答案
- 減粘裂化裝置操作工崗前安全操作考核試卷含答案
- 計(jì)算機(jī)板級(jí)維修工操作評(píng)估評(píng)優(yōu)考核試卷含答案
- 中獸醫(yī)員持續(xù)改進(jìn)能力考核試卷含答案
- 班主任安全培訓(xùn)
- 2026北京門頭溝初二上學(xué)期期末語文試卷和答案
- 2026年智能廚房中控系統(tǒng)項(xiàng)目投資計(jì)劃書
- 船艇涂裝教學(xué)課件
- 招標(biāo)績效考核方案(3篇)
- 500萬的咨詢合同范本
- 2025年貸款房屋轉(zhuǎn)贈(zèng)協(xié)議書
- 2025天津市個(gè)人房屋租賃合同樣本
- 中藥熱熨敷技術(shù)及操作流程圖
- 鶴壁供熱管理辦法
- 01 華為采購管理架構(gòu)(20P)
- 糖尿病逆轉(zhuǎn)與綜合管理案例分享
- 工行信息安全管理辦法
- 娛樂場所安全管理規(guī)定與措施
評(píng)論
0/150
提交評(píng)論