版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
云南省彌勒市2024年高考沖刺押題(最后一卷)數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列的前n項和為,,且對于任意,滿足,則()A. B. C. D.2.在中所對的邊分別是,若,則()A.37 B.13 C. D.3.相傳黃帝時代,在制定樂律時,用“三分損益”的方法得到不同的竹管,吹出不同的音調(diào).如圖的程序是與“三分損益”結(jié)合的計算過程,若輸入的的值為1,輸出的的值為()A. B. C. D.4.已知函數(shù),則()A. B. C. D.5.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.在中,“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件7.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.8.當(dāng)輸入的實數(shù)時,執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.9.已知,,則()A. B. C. D.10.若關(guān)于的不等式有正整數(shù)解,則實數(shù)的最小值為()A. B. C. D.11.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)12.復(fù)數(shù)滿足為虛數(shù)單位),則的虛部為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,點的坐標(biāo)為,點是直線:上位于第一象限內(nèi)的一點.已知以為直徑的圓被直線所截得的弦長為,則點的坐標(biāo)__________.14.曲線y=e-5x+2在點(0,3)處的切線方程為________.15.在的二項展開式中,所有項的系數(shù)的和為________16.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個極值點,,證明:.18.(12分)已知函數(shù)f(x)=ex-x2-kx(其中e為自然對數(shù)的底,k為常數(shù))有一個極大值點和一個極小值點.(1)求實數(shù)k的取值范圍;(2)證明:f(x)的極大值不小于1.19.(12分)已知函數(shù),(1)證明:在區(qū)間單調(diào)遞減;(2)證明:對任意的有.20.(12分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿足,證明:.21.(12分)已知在四棱錐中,平面,,在四邊形中,,,,為的中點,連接,為的中點,連接.(1)求證:.(2)求二面角的余弦值.22.(10分)已知函數(shù)(其中是自然對數(shù)的底數(shù))(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導(dǎo)數(shù)相等,證明:;(3)當(dāng)時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當(dāng)時,直線與曲線的交點在y軸兩側(cè)).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項公式,然后求解數(shù)列的和,判斷選項的正誤即可.【詳解】當(dāng)時,.所以數(shù)列從第2項起為等差數(shù)列,,所以,,.,,.故選:.【點睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項公式的求法,考查轉(zhuǎn)化思想以及計算能力,是中檔題.2、D【解析】
直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考查余弦定理解三角形,屬于基礎(chǔ)題.3、B【解析】
根據(jù)循環(huán)語句,輸入,執(zhí)行循環(huán)語句即可計算出結(jié)果.【詳解】輸入,由題意執(zhí)行循環(huán)結(jié)構(gòu)程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結(jié)果.故選:【點睛】本題考查了循環(huán)語句的程序框圖,求輸出的結(jié)果,解答此類題目時結(jié)合循環(huán)的條件進行計算,需要注意跳出循環(huán)的判定語句,本題較為基礎(chǔ).4、A【解析】
根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.5、A【解析】
設(shè)成立;反之,滿足,但,故選A.6、C【解析】
由余弦函數(shù)的單調(diào)性找出的等價條件為,再利用大角對大邊,結(jié)合正弦定理可判斷出“”是“”的充分必要條件.【詳解】余弦函數(shù)在區(qū)間上單調(diào)遞減,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要條件.故選:C.【點睛】本題考查充分必要條件的判定,同時也考查了余弦函數(shù)的單調(diào)性、大角對大邊以及正弦定理的應(yīng)用,考查推理能力,屬于中等題.7、B【解析】
由題意首先確定幾何體的空間結(jié)構(gòu)特征,然后結(jié)合空間結(jié)構(gòu)特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個以為球心以為半徑球體的,如圖,故其表面積為,故選:B.【點睛】(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進行恰當(dāng)?shù)姆治?,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系.(2)多面體的表面積是各個面的面積之和;組合體的表面積應(yīng)注意重合部分的處理.(3)圓柱、圓錐、圓臺的側(cè)面是曲面,計算側(cè)面積時需要將這個曲面展為平面圖形計算,而表面積是側(cè)面積與底面圓的面積之和.8、A【解析】
根據(jù)循環(huán)結(jié)構(gòu)的運行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結(jié)論.【詳解】程序框圖共運行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果、幾何概型的概率,模擬程序運行是解題的關(guān)鍵,屬于基礎(chǔ)題.9、D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎(chǔ)題.10、A【解析】
根據(jù)題意可將轉(zhuǎn)化為,令,利用導(dǎo)數(shù),判斷其單調(diào)性即可得到實數(shù)的最小值.【詳解】因為不等式有正整數(shù)解,所以,于是轉(zhuǎn)化為,顯然不是不等式的解,當(dāng)時,,所以可變形為.令,則,∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,所以當(dāng)時,,故,解得.故選:A.【點睛】本題主要考查不等式能成立問題的解法,涉及到對數(shù)函數(shù)的單調(diào)性的應(yīng)用,構(gòu)造函數(shù)法的應(yīng)用,導(dǎo)數(shù)的應(yīng)用等,意在考查學(xué)生的轉(zhuǎn)化能力,屬于中檔題.11、C【解析】
利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點睛】(1)本題主要考查終邊相同的角的公式,意在考查學(xué)生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.12、C【解析】
,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,故的虛部為.故選:C.【點睛】本題考查復(fù)數(shù)的除法運算,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
依題意畫圖,設(shè),根據(jù)圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點間的距離公式即可求出,進而得出點坐標(biāo).【詳解】解:依題意畫圖,設(shè)以為直徑的圓被直線所截得的弦長為,且,又因為為圓的直徑,則所對的圓周角,則,則為點到直線:的距離.所以,則.又因為點在直線:上,設(shè),則.解得,則.故答案為:【點睛】本題考查了直線與圓的位置關(guān)系,考查了兩點間的距離公式,點到直線的距離公式,是基礎(chǔ)題.14、.【解析】
先利用導(dǎo)數(shù)求切線的斜率,再寫出切線方程.【詳解】因為y′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.【點睛】(1)本題主要考查導(dǎo)數(shù)的幾何意義和函數(shù)的求導(dǎo),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)函數(shù)在點處的導(dǎo)數(shù)是曲線在處的切線的斜率,相應(yīng)的切線方程是15、1【解析】
設(shè),令,的值即為所有項的系數(shù)之和?!驹斀狻吭O(shè),令,所有項的系數(shù)的和為?!军c睛】本題主要考查二項式展開式所有項的系數(shù)的和的求法─賦值法。一般地,對于,展開式各項系數(shù)之和為,注意與“二項式系數(shù)之和”區(qū)分。16、【解析】由分層抽樣的知識可得,即,所以高三被抽取的人數(shù)為,應(yīng)填答案.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】
(1)求得的導(dǎo)函數(shù),對分成兩種情況,討論的單調(diào)性.(2)由(1)判斷出的取值范圍,根據(jù)韋達定理求得的關(guān)系式,利用差比較法,計算,通過構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,由此證得,進而證得不等式成立.【詳解】(1).當(dāng)時,,此時在上單調(diào)遞減;當(dāng)時,由解得或,∵是增函數(shù),∴此時在和單調(diào)遞減,在單調(diào)遞增.(2)由(1)知.,,,不妨設(shè),∴,,令,∴,∴在上是減函數(shù),,∴,即.【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.18、(1);(2)見解析【解析】
(1)求出,記,問題轉(zhuǎn)化為方程有兩個不同解,求導(dǎo),研究極值即可得結(jié)果;(2)由(1)知,在區(qū)間上存在極大值點,且,則可求出極大值,記,求導(dǎo),求單調(diào)性,求出極值即可.【詳解】(1),由,記,,由,且時,,單調(diào)遞減,,時,,單調(diào)遞增,,由題意,方程有兩個不同解,所以;(2)解法一:由(1)知,在區(qū)間上存在極大值點,且,所以的極大值為,記,則,因為,所以,所以時,,單調(diào)遞減,時,,單調(diào)遞增,所以,即函數(shù)的極大值不小于1.解法二:由(1)知,在區(qū)間上存在極大值點,且,所以的極大值為,因為,,所以.即函數(shù)的極大值不小于1.【點睛】本題考查導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,考查學(xué)生綜合分析能力與轉(zhuǎn)化能力,是一道中檔題.19、(1)答案見解析.(2)答案見解析【解析】
(1)利用復(fù)合函數(shù)求導(dǎo)求出,利用導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系即可求解.(2)首先證,令,求導(dǎo)可得單調(diào)遞增,由即可證出;再令,再利用導(dǎo)數(shù)可得單調(diào)遞增,由即可證出.【詳解】(1)顯然時,,故在單調(diào)遞減.(2)首先證,令,則單調(diào)遞增,且,所以再令,所以單調(diào)遞增,即,∴【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)證明不等式,解題的關(guān)鍵掌握復(fù)合函數(shù)求導(dǎo),屬于難題.20、(1)(2)證明見解析【解析】
(1)將函數(shù)轉(zhuǎn)化為分段函數(shù)或利用絕對值三角不等式進行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當(dāng)時,,當(dāng),,當(dāng)時,,所以解法二:(1)如圖當(dāng)時,解法三:(1)當(dāng)且僅當(dāng)即時,等號成立.當(dāng)時解法一:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,因為成立,所以原不等式成立.解法二:(2)因為,,,所以,,又因為,所以,所以,原不等式得證.補充:解法三:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,由柯西不等式得:成立,所以原不等式成立.【點睛】本題主要考查了絕對值函數(shù)的最值求解,不等式的證明,絕對值三角不等式,基本不等式及柯西不等式的應(yīng)用,考查了學(xué)生的邏輯推理和運算求解能力.21、(1)見解析;(2)【解析】
(1)連接,證明,得到面,得到證明.(2)以,,所在直線分別為,,軸建立空間直角坐標(biāo)系,為平面的法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)連接,在四邊形中,,平面,面,,,面,又面,,又在直角三角形中,,為的中點,,,面,面,.(2)以,,所在直線分別為,,軸建立空間直角坐標(biāo)系,,,,,,,設(shè)為平面的法向量,,,,,令,則,,,同理可得平面的一個法向量為.設(shè)向量與的所成的角為,,由圖形知,二面角為銳二面角,所以余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力.22、(1);(2)見解析;(3)見解析【解析】
(1)需滿足恒成立,只需即可;(2)根據(jù)的單調(diào)性,構(gòu)造新函數(shù),并令,根據(jù)的單調(diào)性即可得證;(3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中學(xué)宿舍管理制度
- 臨時麻醉管理制度
- 2026年高級IT項目管理專業(yè)試題庫及答案
- 2026年音樂創(chuàng)作與音樂理論專業(yè)題庫
- 輸尿管支架管拔除同意書
- 廣東省肇慶市高要區(qū)2025-2026學(xué)年九年級上學(xué)期1月期末化學(xué)試題(含答案)
- 2025年陜西省初中學(xué)業(yè)水平考試物理試卷(副題)(含答案)
- 2025年濰坊食品科技職業(yè)學(xué)院馬克思主義基本原理概論期末考試模擬題帶答案解析(必刷)
- 2024年綏江縣幼兒園教師招教考試備考題庫附答案解析
- 2025年連云港職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫附答案解析
- 危險化學(xué)品安全法解讀
- 廣東省佛山市南海區(qū)2025-2026學(xué)年上學(xué)期期末八年級數(shù)學(xué)試卷(含答案)
- 放射應(yīng)急演練及培訓(xùn)制度
- 儲能技術(shù)培訓(xùn)課件模板
- GB/T 7714-2025信息與文獻參考文獻著錄規(guī)則
- 2026元旦主題班會:馬年猜猜樂新春祝福版 教學(xué)課件
- 光伏收購合同范本
- 《沉積學(xué)復(fù)習(xí)提綱》課件
- 信訪工作課件
- 110kV旗潘線π接入社旗陌陂110kV輸電線路施工方案(OPGW光纜)解析
- 第5章 PowerPoint 2016演示文稿制作軟件
評論
0/150
提交評論