版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024/3/61biomedicalSignalprocessing
生物醫(yī)學(xué)信號處理
Chapter1Introduction
Goalsofthecourse?Tounderstand–whatbiomedicalsignalsare–whatproblemsandneedsarerelatedtotheiracquisitionandprocessing–whatkindofmethodsareavailableandgetanideaofhowtheyareappliedandtowhichkindofproblems?Togettoknowbasicdigitalsignalprocessingandanalysistechniquescommonlyappliedtobiomedicalsignalsandtoknowtowhichkindofproblemseachmethodissuitedfor(andforwhichnot)biomedicalSignalProcessingSignal:anyphysicalquantitythatvariesasafunctionofanindependentvariable?independentvariableisusuallytimebutmaybespace,distance,...Biomedicalsignal:asignalbeingobtainedfromabiologicsystem/originatingfromaphysiologicprocess(humanoranimal(-medical->patients))Processingofbiomedicalsignalsalltreatment(ofbiomedicalsignals)whichoccursbetweentheirorigininaphysiologicalprocessandtheirinterpretationbytheirobserver(e.g.clinician)ProcessingofbiomedicalsignalsProcessingofbiomedicalsignalsProcessingofbiomedicalsignalsisapplicationofsignalprocessingmethodsonbiomedicalsignals→Allpossibleprocessingalgorithmsmaybeused→Biomedicalsignalprocessingrequiresunderstandingtheneeds(e.g.biomedicalprocessesandclinicalrequirements)andselectingandapplyingsuitablemethodstomeettheseneedsRationalesforbiomedicalsignalprocessing1.Acquisitionandprocessingtoextractaprioridesiredinformation2.Interpretingthenatureofaphysiologicalprocess,basedeitherona)observationofasignal(explorativenature),orb)observationofhowtheprocessaltersthecharacteristicsofasignal(monitoringachangeofapredefinedcharacteristic)(Some)goalsforbiomedicalsignalprocessing?Quantificationandcompensationfortheeffectsofmeasuringdevicesandnoiseonsignal?Identificationandseparationofdesiredandunwantedcomponentsofasignal?Uncoveringthenatureofphenomenaresponsibleforgeneratingthesignalonthebasisoftheanalysisofthesignalcharacteristics–Relatedtomodelling/inversemodellingbutoftenmorepragmaticExample:heartratemetersSensorSignalprocessingUserExample:ISTVivago?WristCareHealthmonitoringNeedforprocessingtodrawanyconclusionsBeat-to-beatheartrateSystolicanddiastolicbloodpressureSignalprocessingmethodsNoisereductionPreprocessingSignalvalidationFeatureextractionDatacompressionSegmentationPatternrecognitionTrenddetectionEventdetectionDecisionsupportDecisionmakingFiltering(linear,nonlinear,adaptive,optimal)StatisticalsignalprocessingFrequencydomainanalysisTime-frequencyanalysisFuzzylogicArtificialneuralnetworksExpertsystems,rule-basedsystemsGeneticandevolutionarymethodsSignalprocessingmethodsSignalmodellingWaveletsandfilterbanksPCA,ICA,SVDClusteringHigher-orderstatisticsChaosandnonlineardynamicsComplexityandfractals∴Chooserightmethodforrightproblem!BiomedicalsignalclassificationOnthebasisof–signalcharacteristics:technicalpointofview–signalsource:fromwhereandhowthesignalisoriginatedandmeasured–biomedicalapplication:neurophysiology,cardiology,monitoring,diagnosis,…Classificationmaybehelpfulintheselectionofprocessingmethods...DefinitionsDeterministic:maybeaccuratelydescribedmathematically,Usuallypredictable(notincaseofchaos!)Periodic:s(t)=s(t+nT)Almostperiodic:patternsrepeatwithsomeunregularityTransient:signalcharacteristicschangewithtimeDefinitionsStochastic:definedbytheirstatisticalproperties(distribution)Stationary:statisticalpropertiesofthesignaldonotchangeovertimeErgodic:statisticalpropertiesmaybecomputedalongtimedistributions(Whitenoise:acf=0exceptforτ=0whereacf=1;flatspectrum)DefinitionsAllreal(bio)signalsmaybeconsideredstochastic–almostdeterministicsignals(e.g.ECG):waveshapesthat(almost)repeatthemselves→characterization(often)bydetectionofcertainmeasuresorwaves–“truly”stochastic(e.g.EEG)→characterizationbystatisticalpropertiesClassificationbysource?biomedicalsignalsdifferfromothersignalsonlyintermsoftheapplication-signalsthatareusedinthebiomedicalfield?Bioelectricsignals:generatedbynervescellsandmusclecells.Singlecellmeasurements(microelectrodesmeasureactionpotential)and‘gross’measurements(surfaceelectrodesmeasureactionofmanycellsinthevicinity)Classificationbysource?Biomagneticsignals:brain,heart,lungsproduceextremelyweakmagneticfields,thiscontainsadditionalinformationtothatobtainedfrombioelectricsignals.CanbemeasuredusingSQUIDs.?Bioimpedancesignals:tissueimpedancerevealsinfoabouttissuecomposition,bloodvolumeanddistributionandmore.UsuallytwoelectrodestoinjectcurrentandtwotomeasurevoltagedropClassificationbysource?Bioacousticsignals:manyphenomenacreateacousticnoise.Forexample,flowofbloodthroughtheheart,itsvalves,orvesselsandflowofairthroughupperandlowerairwaysandlungs,butalsodigestivetract,jointsandcontractionofmuscles.Recordusingmicrophones.?Biomechanicalsignals:motionanddisplacementsignals,pressure,tensionandflowsignals.Avarietyofmeasurements(notalwayssimple,ofteninvasivemeasurementsareneeded).Classificationbysource?Biochemicalsignals:chemicalmeasurementsfromlivingtissueorsamplesanalyzedinalaboratory.Forexamples,ionconcentrationsorpartialpressures(pO2orpCO2)inblood.(lowfrequencysignals,oftenactuallyDCsignals)?Bioopticalsignals:bloodoxygenationbymeasuringtransmittedandbackscatteredlightfromatissue,estimationofheartoutputbydyedilution.Fiberoptictechnology.Biomedicalapplicationdomains?Informationgathering–measurementofphenomenatounderstandthesystem?Diagnosis–detectionofmalfunction,pathology,orabnormality?Monitoring–toobtaincontinuousorperiodicinformationaboutthesystemBiomedicalapplicationdomains?Therapyandcontrol–modifythebehaviourofthesystemandensuretheresult?Evaluation–objectiveanalysis:proofofperformance,qualitycontrol,effectoftreatmentProblemsinbiomedicalsignalprocessingAccessibility–Patientsafety,preferencefornoninvasiveness–Indirectmeasurements(variablesofinterestarenotaccessible)Variance–Inter-individual,intra-individualProblemsinbiomedicalsignalprocessingInter-relationshipsandinteractionsamongphysiologicalsystem–SubsystemofinterestmaynotbeisolatedAcquisitioninterference–InstrumentationandproceduresmodifythesystemoritsstateArtefactsandinterference–Interferencefromotherphysiologicalsystems(e.g.muscleartifactsinEEGrecordings)–Low-levelsignals(e.g.microvoltsinEEG)requireverysensitiveamplifiers;theyareeasilysensitivetointerference,too!–LimitedpossibilitiesforshieldingorotherprotectionNonlinearityandobscurityofthesystemunderstudyArtefactsandinterference–basicallyallbiologicalsystemsexhibitnonlinearitieswhilemostofthemethodsarebasedontheassumptionoflinearity→approximation–exactstructuresandtruefunctionofmanyphysiologicalsystemsareoftennotknownSignalacquisitionShort-termHRVandBPV2024/3/633signalprocessingApplicationsofsignalprocessing:entertainment,communications,spaceexploration,medicine,archaeology(考古學(xué)),etc.Drivenbytheconvergenceofcommunications,computersandsignalprocessing.2024/3/634signalprocessingSignalprocessingisbenefitedfromaclosecouplingbetweentheory,application,andtechnologiesforimplementingsignalprocessingsystems.Signalprocessingisconcernedwiththerepresentation,transformation,andmanipulationofsignalsandtheinformationtheycontain.2024/3/635ContinuousandDigitalSignalProcessingPriorto1960:continuous-timeanalogsignalprocessing.Digitalsignalprocessingiscausedby:theevolutionofdigitalcomputersandmicroprocessorsImportanttheoreticaldevelopmentssuchasthefastFouriertransformalgorithm(FFT)2024/3/636DigitalandDiscrete-timeSignalProcessingIndigitalsignalprocessingSignalsarerepresentedbysequencesoffinite-precisionnumbersProcessingisimplementedusingdigitalcomputationDigitalsignalprocessingisaspecialcaseofdiscrete-timesignalprocessing2024/3/637DigitalandDiscrete-timeSignalProcessingContinuous-timesignalprocessing:timeandsignalarecontinuousDiscrete-timesignalprocessing:timeisdiscrete,signaliscontinuousDigitalsignalprocessing:timeandsignalarediscrete2024/3/638Discrete-timeProcessingDiscrete-timeprocessingofcontinuous-timesignalReal-timeoperationisoftendesirable:outputiscomputedatthesamerateatwhichtheinputissampled2024/3/639ObjectsofSignalProcessingProcessonesignaltoobtainanothersignalSignalinterpretation:Characterizationoftheinputsignal,Example:speechrecognitiondigitalpreprocessing(filtering,parameterestimation,etc)speechsignalpatternrecognitionexertsystemphonemictranscriptionfinalsignalinterpretation2024/3/640ObjectsofSignalProcessingSymbolicmanipulationofsignalprocessingexpression:signalandsystemsarerepresentedandmanipulatedasabstractdataobjects,withoutexplicitlyevaluatingthedatasequence2024/3/641WhydoWeLearnDSPSoftware,suchasMatlab,hasmanytoolsforsignalprocessingItseemsthatitisnotnecessarytoknowthedetailsofthesealgorithms,suchasFFTAgoodunderstandingoftheconceptsofalgorithmsandprinciplesisessentialforintelligentuseofthesignalprocessingsoftwaretools2024/3/642ExtensionMultidimensionalsignalprocessingimageprocessingSpectralAnalysisSignalmodelingAdaptivesignalprocessingSpecializedfilterdesignSpecializedalgorithmforevaluationofFouriertransformSpecializedfilterstructureMultiratesignalprocessingWalettransform2024/3/643HistoricalPerspective17thcenturyTheinventionofcalculusScientistdevelopedmodelsofphysicalphenomenaintermsoffunctionsofcontinuousvariableanddifferentialequationsNumericaltechniqueisusedtosolvetheseequationsNewtonusedfinite-differencemethodswhicharespecialcasesofsomediscrete-timesystems2024/3/644HistoricalPerspective18thcenturyMathematiciansdevelopedmethodsfornumericalintegrationandinterpolationofcontinuousfunctionsGauss(1805)discoveredthefundamentalprincipleoftheFastFourierTransform(FFT)evenbeforethepublication(1822)ofFourier'streatiseonharmonicseriesrepresentationoffunction(proposedin1807)2024/3/645HistoricalPerspectiveEarly1950ssignalprocessingwasdonewithanalogsystem,implementedwithelectronicscircuitsormechanicaldevices.firstusesofdigitalcomputersindigitalsignalprocessingwasinoilprospecting.Simulatesignalprocessingsystemonadigitalcomputerbeforeimplementingitinanaloghardware,ex.vocoder2024/3/646HistoricalPerspectiveWithflexibilitythedigitalcomputerwasusedtoapproximate,orsimulate,ananalogsignalprocessingsystemThedigitalsignalprocessingcouldnotbedoneinrealtimeSpeed,cost,andsizearethreeoftheimportantfactorsoftheuseofanalogcomponents.Somedigitalflexiblealgorithmhadnocounterpartinanalogsignalprocessing,impractical.all-digitalimplementationtempting2024/3/647HistoricalPerspectiveFFTdiscoveredbyCooleyandTukeyin1965anefficientalgorithmforcomputationofFouriertransforms,whichreducethecomputingtimebyordersofmagnitude.FFTmightbeimplementedinspecial-purposedigitalhardwareManyimpracticalsignalprocessingalgorithmsbecametobepractical2024/3/648HistoricalPerspectiveFFTisaninherentlydiscrete-timeconcept.FFTstimulatedareformulationofmanysignalprocessingconceptsandalgorithmsintermsofdiscrete-timemathematics,whichformedanexactsetofrelationshipsinthediscrete-timedomain,sothereemergedafieldofdiscrete-timesignalprocessing.493/6/202449Chapter2Discrete-TimeSignalsandSystems2.0Introduction2.1Discrete-TimeSignals:Sequences2.2Discrete-TimeSystems2.3LinearTime-Invariant(LTI)Systems2.4PropertiesofLTISystems2.5LinearConstant-CoefficientDifferenceEquations503/6/202450Chapter2Discrete-TimeSignalsandSystems2.6Frequency-DomainRepresentationofDiscrete-TimeSignalsandsystems2.7RepresentationofSequencesbyFourierTransforms2.8SymmetryPropertiesoftheFourierTransform2.9FourierTransformTheorems2.10Discrete-TimeRandomSignals2.11Summary513/6/2024512.0IntroductionSignal:somethingconveysinformationSignalsarerepresentedmathematicallyasfunctionsofoneormoreindependentvariables.Continuous-time(analog)signals,discrete-timesignals,digitalsignalsSignal-processingsystemsareclassifiedalongthesamelinesassignals:Continuous-time(analog)systems,discrete-timesystems,digitalsystemsDiscrete-timesignalSamplingacontinuous-timesignalGenerateddirectlybysomediscrete-timeprocess523/6/2024522.1Discrete-TimeSignals:SequencesDiscrete-TimesignalsarerepresentedasInsampling,1/T(reciprocalofT):samplingfrequencyCumbersome,sojustuse533/6/202453Figure2.1Graphicalrepresentationofadiscrete-timesignalAbscissa:continuousline:isdefinedonlyatdiscreteinstants54Figure2.2EXAMPLESamplingtheanalogwaveform553/6/202455SumoftwosequencesProductoftwosequencesMultiplicationofasequencebyanumberαDelay(shift)ofasequenceBasicSequenceOperations563/6/202456BasicsequencesUnitsamplesequence(discrete-timeimpulse,impulse)573/6/202457BasicsequencesarbitrarysequenceAsumofscaled,delayedimpulses583/6/202458BasicsequencesUnitstepsequenceFirstbackwarddifference593/6/202459BasicSequencesExponentialsequencesAandαarereal:x[n]isrealAispositiveand0<α<1,x[n]ispositiveanddecreasewithincreasingn-1<α<0,x[n]alternateinsign,butdecreaseinmagnitudewithincreasingn:x[n]growsinmagnitudeasnincreases603/6/202460EX.2.1CombiningBasicsequencesIfwewantanexponentialsequencesthatiszeroforn<0,thenCumbersomesimpler613/6/202461BasicsequencesSinusoidalsequence623/6/202462ExponentialSequencesComplexExponentialSequencesExponentiallyweightedsinusoidsExponentiallygrowingenvelopeExponentiallydecreasingenvelopeisreferedto633/6/202463Frequencydifferencebetweencontinuous-timeanddiscrete-timecomplexexponentialsorsinusoids:frequencyofthecomplexsinusoidorcomplexexponential:phase643/6/202464PeriodicSequencesAperiodicsequencewithintegerperiodN653/6/202465EX.2.2
ExamplesofPeriodicSequencesSupposeitisperiodicsequencewithperiodN663/6/202466SupposeitisperiodicsequencewithperiodNEX.2.2
ExamplesofPeriodicSequences673/6/202467EX.2.2
Non-PeriodicSequencesSupposeitisperiodicsequencewithperiodN683/6/202468HighandLowFrequenciesinDiscrete-timesignal(a)w0=0or2(b)w0=/8or15/8(c)w0=/4or7/4(d)w0=693/6/2024692.2Discrete-TimeSystemDiscrete-TimeSystemisatrasformationoroperatorthatmapsinputsequencex[n]intoauniquey[n]y[n]=T{x[n]},x[n],y[n]:discrete-timesignalT{?}x[n]y[n]Discrete-TimeSystem703/6/202470EX.2.3
TheIdealDelaySystemIfisapositiveinteger:thedelayofthesystem.Shifttheinputsequencetotherightbysamplestoformtheoutput.Ifisanegativeinteger:thesystemwillshifttheinputtotheleftbysamples,correspondingtoatimeadvance.713/6/202471x[m]mnn-5dummyindexmEX.2.4MovingAverageforn=7,M1=0,M2=5723/6/202472PropertiesofDiscrete-timesystems
2.2.1Memoryless(memory)systemMemorylesssystems:theoutputy[n]ateveryvalueofndependsonlyontheinputx[n]atthesamevalueofn733/6/202473PropertiesofDiscrete-timesystems
2.2.2LinearSystemsIfT{?}T{?}T{?}T{?}T{?}additivitypropertyhomogeneityorscaling同(齊)次性propertyprincipleofsuperpositionandonlyIf:743/6/202474ExampleofLinearSystemEx.2.6Accumulatorsystemforarbitrarywhen753/6/202475Example2.7NonlinearSystemsMethod:findonecounterexample
counterexample
For
counterexample
For763/6/202476PropertiesofDiscrete-timesystems
2.2.3Time-InvariantSystemsShift-InvariantSystemsT{?}T{?}773/6/202477ExampleofTime-InvariantSystemEx.2.8Accumulatorsystem783/6/202478ExampleofTime-varyingSystemEx.2.9ThecompressorsystemT{?}0T{?}000T{?}793/6/202479PropertiesofDiscrete-timesystems
2.2.4CausalityAsystemiscausalif,foreverychoiceof,theoutputsequencevalueattheindexdependsonlyontheinputsequencevaluefor803/6/202480Ex.2.10ExampleforCausalSystemForwarddifferencesystemisnotCausalBackwarddifferencesystemisCausal813/6/202481PropertiesofDiscrete-timesystems
2.2.5StabilityBounded-InputBounded-Output(BIBO)Stability:everyboundedinputsequenceproducesaboundedoutputsequence.ifthen823/6/202482Ex.2.11TestforStabilityorInstabilityifthenisstable833/6/202483AccumulatorsystemEx.2.11TestforStabilityorInstabilityAccumulatorsystemisnotstable843/6/2024842.3LinearTime-Invariant(LTI)SystemsImpulseresponseT{?}T{?}853/6/202485LTISystems:ConvolutionRepresentationofgeneralsequenceasalinearcombinationofdelayedimpulseprincipleofsuperpositionAnIllustrationExample(interpretation1)
863/6/202486873/6/202487ComputationoftheConvolutionreflectingh[k]abouttheorigiontoobtainh[-k]Shiftingtheoriginofthereflectedsequencetok=n(interpretation2)883/6/202488Ex.2.1289ConvolutioncanberealizedbyReflectingh[k]abouttheorigintoobtainh[-k].Shiftingtheoriginofthereflectedsequencestok=n.Computingtheweightedmovingaverageofx[k]byusingtheweightsgivenbyh[n-k].903/6/202490Ex.2.13AnalyticalEvaluationoftheConvolutionForsystemwithimpulseresponseh(k)0inputFindtheoutputatindexn913/6/202491h(k)00h(n-k)x(k)h(-k)0923/6/202492h(-k)0h(k)0933/6/202493h(-k)0h(k)0943/6/202494953/6/2024952.4PropertiesofLTISystemsConvolutioniscommutative(可交換的)h[n]x[n]y[n]x[n]h[n]y[n]Convolutionisdistributedoveraddition963/6/202496Cascadeconnectionofsystemsx
[n]h1[n]h2[n]y
[n]x
[n]h2[n]h1[n]y
[n]x
[n]h1[n]]h2[n]y
[n]973/6/202497Parallelconnectionofsystems983/6/202498StabilityofLTISystemsLTIsystemisstableiftheimpulseresponseisabsolutelysummable.CausalityofLTIsystemsHW:proof,Problem2.62993/6/202499ImpulseresponseofLTIsystemsImpulseresponseofIdealDelaysystemsImpulseresponseofAccumulator1003/6/2024100ImpulseresponseofMovingAveragesystems101ImpulseresponseofForwardDifferenceImpulseresponseofBackwardDifference102Finite-durationimpulseresponse(FIR)systemsTheimpulseresponseofthesystemhasonlyafinitenumberofnonzerosamples.TheFIRsystemsalwaysarestable.suchas:103Infinite-durationimpulseresponse(IIR)Theimpulseresponseofthesystemisinfiniteinduration.StableIIR
System:104Equivalentsystems105Inversesystem1062.5LinearConstant-CoefficientDifferenceEquationsAnimportantsubclassoflineartime-invariantsystemsconsistofthosesystemforwhichtheinputx[n]andoutputy[n]satisfyanNth-orderlinearconstant-coefficientdifferenceequation.107Ex.2.14DifferenceEquationRepresentationoftheAccumulator108Blockdiagramofarecursivedifferenceequationrepresentinganaccumulator109Ex.2.15DifferenceEquationRepresentationoftheMoving-AverageSystemwithrepresentation1anotherrepresentation1110111DifferenceEquationRepresentationoftheSystemAnunlimitednumberofdistinctdifferenceequationscanbeusedtorepresentagivenlineartime-invariantinput-outputrelation.112SolvingthedifferenceequationWithoutadditionalconstraintsorinformation,alinearconstant-coefficientdifferenceequationfordiscrete-timesystemsdoesnotprovideauniquespecificationoftheoutputforagiveninput.113SolvingthedifferenceequationOutput:Particularsolution:oneoutputsequenceforthegiveninput
Homogenoussolution:solutionforthehomogenousequation():whereistherootsof114SolvingthedifferenceequationrecursivelyIftheinputandasetofauxiliaryvaluearespecified.y(n)canbewritteninarecurrenceformula:115Example2.16RecursiveComputationofDifferenceEquation116Example2.16RecursiveComputationofDifferenceEquation117ExampleforRecursiveComputationofDifferenceEquationThesystemisnoncausal.Thesystemisnotlinear.Thesystemisnottimeinvariant.118DifferenceEquationRepresentationoftheSystemIfasystemischaracterizedbyalinearconstant-coefficientdifferenceequationandisfurtherspecifiedtobelinear,timeinvariant,andcausal,thesolutionisunique.Inthiscase,theauxiliaryconditionsarestatedasinitial-restconditions(初始松弛條件).Theauxiliaryinformationisthatiftheinputiszerofor,thentheoutput,isconstrainedtobezerofor119SummaryThesystemforwhichtheinputandoutputsatisfyalinearconstant-coefficientdifferenceequation:Theoutputforagiveninputisnotuniquelyspecified.Auxiliaryconditionsarerequired.120SummaryIftheauxiliaryconditionsareintheformofNsequentialvaluesoftheoutput,latervaluecanbeobtainedbyrearrangingthedifferenceequationasarecursiverelationrunningforwardinn,121Summaryandpriorvaluescanbeobtainedbyrearrangingthedifferenceequationasarecursiverelationrunningbackwardinn.122SummaryLinearity,timeinvariance,andcausalityofthesystemwilldependontheauxiliaryconditions.Ifanadditionalconditionisthatthesystemisinitiallyatrest,thenthesystemwillbelinear,timeinvariant,andcausal.123Example2.16withinitial-restconditionsIftheinputis,againwithinitial-restconditions,thentherecursivesolutioniscarriedoutusingtheinitialcondition124DiscussionIftheinputis,withinitial-restconditions,Notethatfor,initialrestimpliesthatItdoesmeanthatif.Initialrestdoesnotalwaysmeans1252.6Frequency-DomainRepresentationofDiscrete-TimeSignalsandsystems2.6.1EigenfunctionandEigenvalueforLTIiscalledastheeigenfunctionofthesystem,andtheassociatedeigenvalueisIf126EigenfunctionandEigenvalueComplexexponentialsistheeigenfunctionfordiscrete-timesystems.ForLTIsystems:frequencyresponseeigenvalueeigenfunction127Frequencyresponseiscalledasfrequencyresponseofthesystem.Magnitude,phaseRealpart,imaginepart128Example2.17FrequencyresponseoftheidealDelayFromdefination(2.109):129Example2.17FrequencyresponseoftheidealDelay130Linearcombinationofcomplexexponential131Example2.18SinusoidalresponseofLTIsystems132SinusoidalresponseoftheidealDelay133PeriodicFrequencyResponseThefrequencyresponseofdiscrete-timeLTIsystemsisalwaysaperiodicfunctionofthefrequencyvariablewithperiod134PeriodicFrequencyResponseThe“l(fā)owfrequencies”arefrequenciesclosetozeroThe“highfrequencies”arefrequenciesclosetoMoregenerally,modifythefrequencywith,risinteger.Weneedonlyspecifyover135Example2.19
Ideal
Frequency-SelectiveFiltersFrequencyResponseofIdealLow-passFilter136FrequencyResponseofIdealHigh-passFilter
137FrequencyResponseofIdealBand-stopFilter138FrequencyResponseofIdealBand-passFilter139Example2.20FrequencyResponseoftheMoving-AverageSystem140141FrequencyResponseoftheMoving-AverageSystemM1
=0andM2=4相位也取決于符號,不僅與指數(shù)相關(guān)1422.6.2SuddenlyappliedComplexExponentialInputsInpractice,wemaynotapplythecomplexexponentialinputs
ejwntoasystem,butthemorepractical-appearinginputsoftheform
x[n]=ejwnu[n]i.e.,x[n]suddenlyappliedatanarbitrarytime,whichforconveniencewechoosen=0.For
causalLTIsystem:1432.6.2SuddenlyappliedComplexExponentialInputsForn≥0ForcausalLTIsystem1442.6.2SuddenlyappliedComplexExponentialInputsSteady-stateResponseTransientresponse1452.6.2SuddenlyAppliedComplexExponentialInputs(continue)Forinfinite-durationimpulseresponse(IIR)Forstablesystem,transientresponsemustbecomeincreasinglysmallerasn
,Illustrationofarealpartofsuddenlyappliedcomplexexponential
Input
with
IIR146Ifh[n]=0exceptfor0n
M
(FIR),
thenthetransientresponseyt[n]=0forn+1>M.Forn
M,onlythesteady-stateresponseexists2.6.2SuddenlyAppliedComplexExponentialInputs(continue)
Illustrationofarealpartofsuddenlyappliedcomplexexponential
Input
with
FIR1472.7RepresentationofSequencesbyFourierTransforms(Discrete-Time)FourierTransform,DTFT,analyzingIfisabsolutelysummable,i.e.thenexists.(Stability)InverseFourierTransform,synthesis148FourierTransformrectangularformpolarform149PrincipalValue(主值)isnotuniquebecauseanymaybeaddedtowithoutaffectingtheresultofthecomplexexponentiation.Principlevalue:isrestrictedtotherangeofvaluesbetween.Itisdenotedas:phasefunctionisreferredasacontinuousfunctionoffor150ImpulseresponseandFrequencyresponseThefrequencyresponseofaLTIsystemist
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)健康與職業(yè)康復(fù)的支付機(jī)制創(chuàng)新
- 陜西2025年陜西跨行政區(qū)劃檢察機(jī)關(guān)招聘聘用制書記員21人筆試歷年參考題庫附帶答案詳解
- 鄭州2025年河南鄭州市中牟縣招聘中小學(xué)教師90人筆試歷年參考題庫附帶答案詳解
- 衢州2025年浙江衢州龍游縣氣象局編外人員招聘筆試歷年參考題庫附帶答案詳解
- 綿陽2025年四川綿陽仙海水利風(fēng)景區(qū)社會事業(yè)發(fā)展局招聘員額教師2人筆試歷年參考題庫附帶答案詳解
- 濰坊2025年山東濰坊市教育局所屬單位學(xué)校招聘14人筆試歷年參考題庫附帶答案詳解
- 河北2025年河北省文物考古研究院選聘工作人員2人筆試歷年參考題庫附帶答案詳解
- 廣西2025年廣西職業(yè)技術(shù)學(xué)院招聘44人筆試歷年參考題庫附帶答案詳解
- 寧夏2025年寧夏圖書館選調(diào)筆試歷年參考題庫附帶答案詳解
- 南通國家統(tǒng)計局啟東調(diào)查隊招聘勞務(wù)派遣人員筆試歷年參考題庫附帶答案詳解
- 2025年上海市公務(wù)員《行政職業(yè)能力測驗(A卷)》試題(網(wǎng)友回憶版)
- 城市更新與區(qū)域經(jīng)濟(jì)刺激-洞察闡釋
- GB/T 7573-2025紡織品水萃取液pH值的測定
- 境內(nèi)大中小型企業(yè)貸款專項統(tǒng)計制度
- 北師版-八年級數(shù)學(xué)上冊常見計算題練習(xí)
- 【生物】種子的萌發(fā)-2024-2025學(xué)年七年級生物下冊同步教學(xué)課件(人教版2024)
- 光伏發(fā)電安裝質(zhì)量驗收評定表
- 房屋過戶給子女的協(xié)議書的范文
- 超聲振動珩磨裝置的總體設(shè)計
- 醫(yī)保違規(guī)行為分類培訓(xùn)課件
- 醫(yī)療器械法規(guī)對互聯(lián)網(wǎng)銷售的限制
評論
0/150
提交評論