四川省成都市都江堰區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)模試卷含解析_第1頁(yè)
四川省成都市都江堰區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)模試卷含解析_第2頁(yè)
四川省成都市都江堰區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)模試卷含解析_第3頁(yè)
四川省成都市都江堰區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)模試卷含解析_第4頁(yè)
四川省成都市都江堰區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省成都市都江堰區(qū)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)模試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.由一些相同的小立方塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小立方塊有()A.3塊 B.4塊 C.6塊 D.9塊2.在一張考卷上,小華寫下如下結(jié)論,記正確的個(gè)數(shù)是m,錯(cuò)誤的個(gè)數(shù)是n,你認(rèn)為有公共頂點(diǎn)且相等的兩個(gè)角是對(duì)頂角若,則它們互余A.4 B. C. D.3.在一個(gè)不透明的口袋里有紅、黃、藍(lán)三種顏色的小球,這些球除顏色外都相同,其中有5個(gè)紅球,4個(gè)藍(lán)球.若隨機(jī)摸出一個(gè)藍(lán)球的概率為,則隨機(jī)摸出一個(gè)黃球的概率為()A. B. C. D.4.有一種球狀細(xì)菌的直徑用科學(xué)記數(shù)法表示為2.16×10﹣3米,則這個(gè)直徑是()A.216000米 B.0.00216米C.0.000216米 D.0.0000216米5.如圖,從邊長(zhǎng)為a的正方形中去掉一個(gè)邊長(zhǎng)為b的小正方形,然后將剩余部分剪后拼成一個(gè)長(zhǎng)方形,上述操作能驗(yàn)證的等式是()A. B.C. D.6.小軍旅行箱的密碼是一個(gè)六位數(shù),由于他忘記了密碼的末位數(shù)字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.7.的值為()A. B.- C.9 D.-98.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-69.如圖,I是?ABC的內(nèi)心,AI向延長(zhǎng)線和△ABC的外接圓相交于點(diǎn)D,連接BI,BD,DC下列說法中錯(cuò)誤的一項(xiàng)是()A.線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定能與線段DC重合B.線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定能與線段DI熏合C.∠CAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定能與∠DAB重合D.線段ID繞點(diǎn)I順時(shí)針旋轉(zhuǎn)一定能與線段IB重合10.如圖,在菱形ABCD中,AB=BD,點(diǎn)E,F(xiàn)分別在AB,AD上,且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H,下列結(jié)論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF,其中正確的結(jié)論A.只有①②. B.只有①③. C.只有②③. D.①②③.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),A的坐標(biāo)為(1,),則點(diǎn)C的坐標(biāo)為_____.12.如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(1,0),半徑為1,點(diǎn)P為直線y=x+3上的動(dòng)點(diǎn),過點(diǎn)P作⊙A的切線,切點(diǎn)為Q,則切線長(zhǎng)PQ的最小值是______________.13.如圖,等邊△ABC的邊長(zhǎng)為6,∠ABC,∠ACB的角平分線交于點(diǎn)D,過點(diǎn)D作EF∥BC,交AB、CD于點(diǎn)E、F,則EF的長(zhǎng)度為_____.14.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E為線段AB的中點(diǎn),D點(diǎn)是射線AC上的一個(gè)動(dòng)點(diǎn),將△ADE沿線段DE翻折,得到△A′DE,當(dāng)A′D⊥AB時(shí),則線段AD的長(zhǎng)為_____.15.兩個(gè)反比例函數(shù)y=kx和y=1x在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y=kx的圖象上,PC⊥x軸于點(diǎn)C,交16.小明統(tǒng)計(jì)了家里3月份的電話通話清單,按通話時(shí)間畫出頻數(shù)分布直方圖(如圖所示),則通話時(shí)間不足10分鐘的通話次數(shù)的頻率是_____.三、解答題(共8題,共72分)17.(8分)為響應(yīng)“植樹造林、造福后人”的號(hào)召,某班組織部分同學(xué)義務(wù)植樹棵,由于同學(xué)們的積極參與,實(shí)際參加的人數(shù)比原計(jì)劃增加了,結(jié)果每人比原計(jì)劃少栽了棵,問實(shí)際有多少人參加了這次植樹活動(dòng)?18.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點(diǎn),以BD為直徑的⊙O經(jīng)過點(diǎn)E,且交BC于點(diǎn)F.(1)求證:AC是⊙O的切線;(2)若BF=6,⊙O的半徑為5,求CE的長(zhǎng).19.(8分)解分式方程:20.(8分)如圖,正方形ABCD中,M為BC上一點(diǎn),F(xiàn)是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N.求證:△ABM∽△EFA;若AB=12,BM=5,求DE的長(zhǎng).21.(8分)如圖,對(duì)稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).(1)求拋物線解析式及頂點(diǎn)坐標(biāo);(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(3)①當(dāng)四邊形OEAF的面積為24時(shí),請(qǐng)判斷OEAF是否為菱形?②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.22.(10分)某工廠去年的總收入比總支出多50萬(wàn)元,計(jì)劃今年的總收入比去年增加10%,總支出比去年節(jié)約20%,按計(jì)劃今年總收入將比總支出多100萬(wàn)元.今年的總收入和總支出計(jì)劃各是多少萬(wàn)元?23.(12分)如圖,⊙O的直徑DF與弦AB交于點(diǎn)E,C為⊙O外一點(diǎn),CB⊥AB,G是直線CD上一點(diǎn),∠ADG=∠ABD.求證:AD?CE=DE?DF;說明:(1)如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請(qǐng)你把探索過程中的某種思路過程寫出來(要求至少寫3步);(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②、③中選取一個(gè)補(bǔ)充或更換已知條件,完成你的證明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.24.如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,1),B(4,0),C(4,4).按下列要求作圖:①將△ABC向左平移4個(gè)單位,得到△A1B1C1;②將△A1B1C1繞點(diǎn)B1逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1.求點(diǎn)C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長(zhǎng).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:從俯視圖中可以看出最底層小正方體的個(gè)數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個(gè)數(shù),從而算出總的個(gè)數(shù).解答:解:從俯視圖可得最底層有3個(gè)小正方體,由主視圖可得有2層上面一層是1個(gè)小正方體,下面有2個(gè)小正方體,從左視圖上看,后面一層是2個(gè)小正方體,前面有1個(gè)小正方體,所以此幾何體共有四個(gè)正方體.故選B.2、D【解析】

首先判斷出四個(gè)結(jié)論的錯(cuò)誤個(gè)數(shù)和正確個(gè)數(shù),進(jìn)而可得m、n的值,再計(jì)算出即可.【詳解】解:有公共頂點(diǎn)且相等的兩個(gè)角是對(duì)頂角,錯(cuò)誤;

,正確;

,錯(cuò)誤;

若,則它們互余,錯(cuò)誤;

則,,

,

故選D.【點(diǎn)睛】此題主要考查了二次根式的乘除、對(duì)頂角、科學(xué)記數(shù)法、余角和負(fù)整數(shù)指數(shù)冪,關(guān)鍵是正確確定m、n的值.3、A【解析】

設(shè)黃球有x個(gè),根據(jù)摸出一個(gè)球是藍(lán)球的概率是,得出黃球的個(gè)數(shù),再根據(jù)概率公式即可得出隨機(jī)摸出一個(gè)黃球的概率.【詳解】解:設(shè)袋子中黃球有x個(gè),根據(jù)題意,得:,解得:x=3,即袋中黃球有3個(gè),所以隨機(jī)摸出一個(gè)黃球的概率為,故選A.【點(diǎn)睛】此題主要考查了概率公式的應(yīng)用,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.得到所求的情況數(shù)是解決本題的關(guān)鍵.4、B【解析】

絕對(duì)值小于1的負(fù)數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】2.16×10﹣3米=0.00216米.故選B.【點(diǎn)睛】考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.5、A【解析】

由圖形可以知道,由大正方形的面積-小正方形的面積=矩形的面積,進(jìn)而可以證明平方差公式.【詳解】解:大正方形的面積-小正方形的面積=,

矩形的面積=,

故,

故選:A.【點(diǎn)睛】本題主要考查平方差公式的幾何意義,用兩種方法表示陰影部分的面積是解題的關(guān)鍵.6、A【解析】∵密碼的末位數(shù)字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當(dāng)他忘記了末位數(shù)字時(shí),要一次能打開的概率是.故選A.7、A【解析】【分析】根據(jù)絕對(duì)值的意義進(jìn)行求解即可得.【詳解】表示的是的絕對(duì)值,數(shù)軸上表示的點(diǎn)到原點(diǎn)的距離是,即的絕對(duì)值是,所以的值為,故選A.【點(diǎn)睛】本題考查了絕對(duì)值的意義,熟練掌握絕對(duì)值的意義是解題的關(guān)鍵.8、B【解析】

先根據(jù)多項(xiàng)式乘以多項(xiàng)式的法則,將(x-2)(x+3)展開,再根據(jù)兩個(gè)多項(xiàng)式相等的條件即可確定p、q的值.【詳解】解:∵(x-2)(x+3)=x2+x-1,

又∵(x-2)(x+3)=x2+px+q,

∴x2+px+q=x2+x-1,

∴p=1,q=-1.

故選:B.【點(diǎn)睛】本題主要考查多項(xiàng)式乘以多項(xiàng)式的法則及兩個(gè)多項(xiàng)式相等的條件.多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加.兩個(gè)多項(xiàng)式相等時(shí),它們同類項(xiàng)的系數(shù)對(duì)應(yīng)相等.9、D【解析】解:∵I是△ABC的內(nèi)心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正確,不符合題意;∴=,∴BD=CD,故A正確,不符合題意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正確,不符合題意.故選D.點(diǎn)睛:本題考查了三角形的內(nèi)切圓和內(nèi)心的,以及等腰三角形的判定與性質(zhì),同弧所對(duì)的圓周角相等.10、D【解析】

解:①∵ABCD為菱形,∴AB=AD.∵AB=BD,∴△ABD為等邊三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點(diǎn)B、C、D、G四點(diǎn)共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.過點(diǎn)C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,則△CBM≌△CDN,(HL)∴S四邊形BCDG=S四邊形CMGN.S四邊形CMGN=1S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四邊形CMGN=1S△CMG=1××CG×CG=CG1.③過點(diǎn)F作FP∥AE于P點(diǎn).∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故選D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、(﹣,1)【解析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點(diǎn)C坐標(biāo)(﹣,1),故答案為(,1).點(diǎn)睛:本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí),坐標(biāo)與圖形的性質(zhì),解題的關(guān)鍵是學(xué)會(huì)添加常用的輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.注意:距離都是非負(fù)數(shù),而坐標(biāo)可以是負(fù)數(shù),在由距離求坐標(biāo)時(shí),需要加上恰當(dāng)?shù)姆?hào).12、2【解析】分析:因?yàn)锽P=,AB的長(zhǎng)不變,當(dāng)PA最小時(shí)切線長(zhǎng)PB最小,所以點(diǎn)P是過點(diǎn)A向直線l所作垂線的垂足,利用△APC≌△DOC求出AP的長(zhǎng)即可求解.詳解:如圖,作AP⊥直線y=x+3,垂足為P,此時(shí)切線長(zhǎng)PB最小,設(shè)直線與x軸,y軸分別交于D,C.∵A的坐標(biāo)為(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC與△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案為2.點(diǎn)睛:本題考查了切線的性質(zhì),全等三角形的判定性質(zhì),勾股定理及垂線段最短,因?yàn)橹苯侨切沃械娜呴L(zhǎng)滿足勾股定理,所以當(dāng)其中的一邊的長(zhǎng)不變時(shí),即可根據(jù)另一邊的取值情況確定第三邊的最大值或最小值.13、4【解析】試題分析:根據(jù)BD和CD分別平分∠ABC和∠ACB,和EF∥BC,利用兩直線平行,內(nèi)錯(cuò)角相等和等量代換,求證出BE=DE,DF=FC.然后即可得出答案.解:∵在△ABC中,BD和CD分別平分∠ABC和∠ACB,∴∠EBD=∠DBC,∠FCD=∠DCB,∵EF∥BC,∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,∴BE=DE,DF=EC,∵EF=DE+DF,∴EF=EB+CF=2BE,∵等邊△ABC的邊長(zhǎng)為6,∵EF∥BC,∴△ADE是等邊三角形,∴EF=AE=2BE,∴EF==,故答案為4考點(diǎn):等邊三角形的判定與性質(zhì);平行線的性質(zhì).14、或.【解析】

①延長(zhǎng)A'D交AB于H,則A'H⊥AB,然后根據(jù)勾股定理算出AB,推斷出△ADH∽△ABC,即可解答此題②同①的解題思路一樣【詳解】解:分兩種情況:①如圖1所示:設(shè)AD=x,延長(zhǎng)A'D交AB于H,則A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB==13,∵∠A=∠A,∴△ADH∽△ABC,∴,即,解得:DH=x,AH=x,∵E是AB的中點(diǎn),∴AE=AB=,∴HE=AE﹣AH=﹣x,由折疊的性質(zhì)得:A'D=AD=x,A'E=AE=,∴sin∠A=sin∠A'=,解得:x=;②如圖2所示:設(shè)AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=,DH=x,∴A'H=A'D﹣DH=x﹣=x,∴cos∠A=cos∠A'=,解得:x=;綜上所述,AD的長(zhǎng)為或.故答案為或.【點(diǎn)睛】此題考查了勾股定理,三角形相似,關(guān)鍵在于做輔助線15、①②④.【解析】①△ODB與△OCA的面積相等;正確,由于A、B在同一反比例函數(shù)圖象上,則兩三角形面積相等,都為12②四邊形PAOB的面積不會(huì)發(fā)生變化;正確,由于矩形OCPD、三角形ODB、三角形OCA為定值,則四邊形PAOB的面積不會(huì)發(fā)生變化.③PA與PB始終相等;錯(cuò)誤,不一定,只有當(dāng)四邊形OCPD為正方形時(shí)滿足PA=PB.④當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn).正確,當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),k=2,則此時(shí)點(diǎn)B也一定是PD的中點(diǎn).故一定正確的是①②④16、0.7【解析】

用通話時(shí)間不足10分鐘的通話次數(shù)除以通話的總次數(shù)即可得.【詳解】由圖可知:小明家3月份通話總次數(shù)為20+15+10+5=50(次);其中通話不足10分鐘的次數(shù)為20+15=35(次),∴通話時(shí)間不足10分鐘的通話次數(shù)的頻率是35÷50=0.7.故答案為0.7.三、解答題(共8題,共72分)17、人【解析】

解:設(shè)原計(jì)劃有x人參加了這次植樹活動(dòng)依題意得:解得x=30人經(jīng)檢驗(yàn)x=30是原方程式的根實(shí)際參加了這次植樹活動(dòng)1.5x=45人答實(shí)際有45人參加了這次植樹活動(dòng).18、(1)證明見解析;(2)CE=1.【解析】

(1)根據(jù)等角對(duì)等邊得∠OBE=∠OEB,由角平分線的定義可得∠OBE=∠EBC,從而可得∠OEB=∠EBC,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可得OE∥BC,根據(jù)兩直線平行,同位角相等可得∠OEA=90°,從而可證AC是⊙O的切線.

(2)根據(jù)垂徑定理可求BH=BF=3,根據(jù)三個(gè)角是直角的四邊形是矩形,可得四邊形OHCE是矩形,由矩形的對(duì)邊相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的長(zhǎng),從而求出CE的長(zhǎng).【詳解】(1)證明:如圖,連接OE,

∵OB=OE,

∴∠OBE=∠OEB,

∵BE平分∠ABC.

∴∠OBE=∠EBC,

∴∠OEB=∠EBC,

∴OE∥BC,

∵∠ACB=90°,

∴∠OEA=∠ACB=90°,

∴AC是⊙O的切線.

(2)解:過O作OH⊥BF,

∴BH=BF=3,四邊形OHCE是矩形,

∴CE=OH,

在Rt△OBH中,BH=3,OB=5,

∴OH==1,

∴CE=1.【點(diǎn)睛】本題考查切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線和垂徑定理以及勾股定理的運(yùn)用,具有一定的綜合性.19、無解【解析】

首先進(jìn)行去分母,將分式方程轉(zhuǎn)化為整式方程,然后按照整式方程的求解方法進(jìn)行求解,最后對(duì)所求的解進(jìn)行檢驗(yàn),看是否能使分母為零.【詳解】解:兩邊同乘以(x+2)(x-2)得:x(x+2)-(x+2)(x-2)=8去括號(hào),得:+2x-+4=8移項(xiàng)、合并同類項(xiàng)得:2x=4解得:x=2經(jīng)檢驗(yàn),x=2是方程的增根∴方程無解【點(diǎn)睛】本題考查解分式方程,注意分式方程結(jié)果要檢驗(yàn).20、(1)見解析;(2)4.1【解析】

試題分析:(1)由正方形的性質(zhì)得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出結(jié)論;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的長(zhǎng).試題解析:(1)∵四邊形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=10°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中點(diǎn),∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.1,∴DE=AE-AD=4.1.考點(diǎn):1.相似三角形的判定與性質(zhì);2.正方形的性質(zhì).21、(1)拋物線解析式為,頂點(diǎn)為;(2),1<<1;(3)①四邊形是菱形;②不存在,理由見解析【解析】

(1)已知了拋物線的對(duì)稱軸解析式,可用頂點(diǎn)式二次函數(shù)通式來設(shè)拋物線,然后將A、B兩點(diǎn)坐標(biāo)代入求解即可.(2)平行四邊形的面積為三角形OEA面積的2倍,因此可根據(jù)E點(diǎn)的橫坐標(biāo),用拋物線的解析式求出E點(diǎn)的縱坐標(biāo),那么E點(diǎn)縱坐標(biāo)的絕對(duì)值即為△OAE的高,由此可根據(jù)三角形的面積公式得出△AOE的面積與x的函數(shù)關(guān)系式進(jìn)而可得出S與x的函數(shù)關(guān)系式.(3)①將S=24代入S,x的函數(shù)關(guān)系式中求出x的值,即可得出E點(diǎn)的坐標(biāo)和OE,OA的長(zhǎng);如果平行四邊形OEAF是菱形,則需滿足平行四邊形相鄰兩邊的長(zhǎng)相等,據(jù)此可判斷出四邊形OEAF是否為菱形.②如果四邊形OEAF是正方形,那么三角形OEA應(yīng)該是等腰直角三角形,即E點(diǎn)的坐標(biāo)為(3,﹣3)將其代入拋物線的解析式中即可判斷出是否存在符合條件的E點(diǎn).【詳解】(1)由拋物線的對(duì)稱軸是,可設(shè)解析式為.把A、B兩點(diǎn)坐標(biāo)代入上式,得解之,得故拋物線解析式為,頂點(diǎn)為(2)∵點(diǎn)在拋物線上,位于第四象限,且坐標(biāo)適合,∴y<0,即-y>0,-y表示點(diǎn)E到OA的距離.∵OA是的對(duì)角線,∴.因?yàn)閽佄锞€與軸的兩個(gè)交點(diǎn)是(1,0)的(1,0),所以,自變量的取值范圍是1<<1.(3)①根據(jù)題意,當(dāng)S=24時(shí),即.化簡(jiǎn),得解之,得故所求的點(diǎn)E有兩個(gè),分別為E1(3,-4),E2(4,-4).點(diǎn)E1(3,-4)滿足OE=AE,所以是菱形;點(diǎn)E2(4,-4)不滿足OE=AE,所以不是菱形.②當(dāng)OA⊥EF,且OA=EF時(shí),是正方形,此時(shí)點(diǎn)E的坐標(biāo)只能是(3,-3).而坐標(biāo)為(3,-3)的點(diǎn)不在拋物線上,故不存在這樣的點(diǎn)E,使為正方形.22、今年的總收入為220萬(wàn)元,總支出為1萬(wàn)元.【解析】試題分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論