2024屆呼倫貝爾市重點(diǎn)中學(xué)中考一模數(shù)學(xué)試題含解析_第1頁(yè)
2024屆呼倫貝爾市重點(diǎn)中學(xué)中考一模數(shù)學(xué)試題含解析_第2頁(yè)
2024屆呼倫貝爾市重點(diǎn)中學(xué)中考一模數(shù)學(xué)試題含解析_第3頁(yè)
2024屆呼倫貝爾市重點(diǎn)中學(xué)中考一模數(shù)學(xué)試題含解析_第4頁(yè)
2024屆呼倫貝爾市重點(diǎn)中學(xué)中考一模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆呼倫貝爾市重點(diǎn)中學(xué)中考一模數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.某班選舉班干部,全班有1名同學(xué)都有選舉權(quán)和被選舉權(quán),他們的編號(hào)分別為1,2,…,1.老師規(guī)定:同意某同學(xué)當(dāng)選的記“1”,不同意(含棄權(quán))的記“0”.如果令其中i=1,2,…,1;j=1,2,…,1.則a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實(shí)際意義是()A.同意第1號(hào)或者第2號(hào)同學(xué)當(dāng)選的人數(shù)B.同時(shí)同意第1號(hào)和第2號(hào)同學(xué)當(dāng)選的人數(shù)C.不同意第1號(hào)或者第2號(hào)同學(xué)當(dāng)選的人數(shù)D.不同意第1號(hào)和第2號(hào)同學(xué)當(dāng)選的人數(shù)2.已知一次函數(shù)y=﹣2x+3,當(dāng)0≤x≤5時(shí),函數(shù)y的最大值是()A.0B.3C.﹣3D.﹣73.如圖,小剛從山腳A出發(fā),沿坡角為的山坡向上走了300米到達(dá)B點(diǎn),則小剛上升了()A.米 B.米 C.米 D.米4.計(jì)算﹣的結(jié)果為()A. B. C. D.5.一個(gè)布袋內(nèi)只裝有1個(gè)黑球和2個(gè)白球,這些球除顏色不同外其余都相同,隨機(jī)摸出一個(gè)球后放回?cái)噭?再隨機(jī)摸出一個(gè)球,則兩次摸出的球都是黑球的概率是()A. B. C. D.6.平面上直線a、c與b相交(數(shù)據(jù)如圖),當(dāng)直線c繞點(diǎn)O旋轉(zhuǎn)某一角度時(shí)與a平行,則旋轉(zhuǎn)的最小度數(shù)是()A.60° B.50° C.40° D.30°7.如圖,在矩形ABCD中,AB=2a,AD=a,矩形邊上一動(dòng)點(diǎn)P沿A→B→C→D的路徑移動(dòng).設(shè)點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng)為x,PD2=y,則下列能大致反映y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.8.如圖是一個(gè)小正方體的展開(kāi)圖,把展開(kāi)圖折疊成小正方體后,有“我”字的一面相對(duì)面上的字是()A.國(guó) B.厲 C.害 D.了9.函數(shù)y=的自變量x的取值范圍是()A.x≠2 B.x<2 C.x≥2 D.x>210.若=1,則符合條件的m有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.我們知道,四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為2的正方形ABCD的邊AB在x軸上,AB的中點(diǎn)是坐標(biāo)原點(diǎn)O,固定點(diǎn)A,B,把正方形沿箭頭方向推,使點(diǎn)D落在y軸正半軸上點(diǎn)D'處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C'的坐標(biāo)為_(kāi)____.12.方程的根是________.13.某校九年級(jí)(1)班40名同學(xué)中,14歲的有1人,15歲的有21人,16歲的有16人,17歲的有2人,則這個(gè)班同學(xué)年齡的中位數(shù)是___歲.14.已知拋物線與直線在之間有且只有一個(gè)公共點(diǎn),則的取值范圍是__.15.如圖,正方形ABCD邊長(zhǎng)為3,以直線AB為軸,將正方形旋轉(zhuǎn)一周.所得圓柱的主視圖(正視圖)的周長(zhǎng)是_____.16.如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(﹣4,0),將△ABC沿x軸向左平移,當(dāng)點(diǎn)C落在直線y=﹣2x﹣6上時(shí),則點(diǎn)C沿x軸向左平移了_____個(gè)單位長(zhǎng)度.三、解答題(共8題,共72分)17.(8分)已知關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;(2)若方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實(shí)數(shù)m的值.18.(8分)作圖題:在∠ABC內(nèi)找一點(diǎn)P,使它到∠ABC的兩邊的距離相等,并且到點(diǎn)A、C的距離也相等.(寫(xiě)出作法,保留作圖痕跡)19.(8分)如圖,四邊形ABCD中,AC平分∠DAB,AC2=AB?AD,∠ADC=90°,E為AB的中點(diǎn).(1)求證:△ADC∽△ACB;(2)CE與AD有怎樣的位置關(guān)系?試說(shuō)明理由;(3)若AD=4,AB=6,求的值.20.(8分)如圖,熱氣球的探測(cè)器顯示,從熱氣球A看一棟髙樓頂部B的仰角為30°,看這棟高樓底部C的俯角為60°,熱氣球A與高樓的水平距離為120m,求這棟高樓BC的高度.21.(8分)已知開(kāi)口向下的拋物線y=ax2-2ax+2與y軸的交點(diǎn)為A,頂點(diǎn)為B,對(duì)稱(chēng)軸與x軸的交點(diǎn)為C,點(diǎn)A與點(diǎn)D關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),直線BD與x軸交于點(diǎn)M,直線AB與直線OD交于點(diǎn)N.(1)求點(diǎn)D的坐標(biāo).(2)求點(diǎn)M的坐標(biāo)(用含a的代數(shù)式表示).(3)當(dāng)點(diǎn)N在第一象限,且∠OMB=∠ONA時(shí),求a的值.22.(10分)如圖1,在正方形ABCD中,P是對(duì)角線BD上的一點(diǎn),點(diǎn)E在AD的延長(zhǎng)線上,且PA=PE,PE交CD于F(1)證明:PC=PE;(2)求∠CPE的度數(shù);(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說(shuō)明理由.23.(12分)如圖,在△ABC中,AB=AC=4,∠A=36°.在AC邊上確定點(diǎn)D,使得△ABD與△BCD都是等腰三角形,并求BC的長(zhǎng)(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)24.如圖,已知點(diǎn)D在反比例函數(shù)y=的圖象上,過(guò)點(diǎn)D作x軸的平行線交y軸于點(diǎn)B(0,3).過(guò)點(diǎn)A(5,0)的直線y=kx+b與y軸于點(diǎn)C,且BD=OC,tan∠OAC=.(1)求反比例函數(shù)y=和直線y=kx+b的解析式;(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說(shuō)明理由;(3)點(diǎn)E為x軸上點(diǎn)A右側(cè)的一點(diǎn),且AE=OC,連接BE交直線CA與點(diǎn)M,求∠BMC的度數(shù).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

先寫(xiě)出同意第1號(hào)同學(xué)當(dāng)選的同學(xué),再寫(xiě)出同意第2號(hào)同學(xué)當(dāng)選的同學(xué),那么同時(shí)同意1,2號(hào)同學(xué)當(dāng)選的人數(shù)是他們對(duì)應(yīng)相乘再相加.【詳解】第1,2,3,……,1名同學(xué)是否同意第1號(hào)同學(xué)當(dāng)選依次由a1,1,a2,1,a3,1,…,a1,1來(lái)確定,是否同意第2號(hào)同學(xué)當(dāng)選依次由a1,2,a2,2,a3,2,…,a1,2來(lái)確定,∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實(shí)際意義是同時(shí)同意第1號(hào)和第2號(hào)同學(xué)當(dāng)選的人數(shù),故選B.【點(diǎn)睛】本題考查了推理應(yīng)用題,題目比較新穎,是基礎(chǔ)題.2、B【解析】【分析】由于一次函數(shù)y=-2x+3中k=-2<0由此可以確定y隨x的變化而變化的情況,即確定函數(shù)的增減性,然后利用解析式即可求出自變量在0≤x≤5范圍內(nèi)函數(shù)值的最大值.【詳解】∵一次函數(shù)y=﹣2x+3中k=﹣2<0,∴y隨x的增大而減小,∴在0≤x≤5范圍內(nèi),x=0時(shí),函數(shù)值最大﹣2×0+3=3,故選B.【點(diǎn)睛】本題考查了一次函數(shù)y=kx+b的圖象的性質(zhì):①k>0,y隨x的增大而增大;②k<0,y隨x的增大而減?。?、A【解析】

利用銳角三角函數(shù)關(guān)系即可求出小剛上升了的高度.【詳解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB?sinα=300sinα米.故選A.【點(diǎn)睛】此題主要考查了解直角三角形的應(yīng)用,根據(jù)題意構(gòu)造直角三角形,正確選擇銳角三角函數(shù)得出AB,BO的關(guān)系是解題關(guān)鍵.4、A【解析】

根據(jù)分式的運(yùn)算法則即可【詳解】解:原式=,故選A.【點(diǎn)睛】本題主要考查分式的運(yùn)算。5、D【解析】試題分析:列表如下

白1

白2

(黑,黑)

(白1,黑)

(白2,黑)

白1

(黑,白1)

(白1,白1)

(白2,白1)

白2

(黑,白2)

(白1,白2)

(白2,白2)

由表格可知,隨機(jī)摸出一個(gè)球后放回?cái)噭?,再隨機(jī)摸出一個(gè)球所以的結(jié)果有9種,兩次摸出的球都是黑球的結(jié)果有1種,所以?xún)纱蚊龅那蚨际呛谇虻母怕适牵蚀鸢高xD.考點(diǎn):用列表法求概率.6、C【解析】

先根據(jù)平角的定義求出∠1的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故選:C.【點(diǎn)睛】本題考查的是平行線的性質(zhì),用到的知識(shí)點(diǎn)為:兩直線平行,同旁?xún)?nèi)角互補(bǔ).7、D【解析】解:(1)當(dāng)0≤t≤2a時(shí),∵,AP=x,∴;(2)當(dāng)2a<t≤3a時(shí),CP=2a+a﹣x=3a﹣x,∵,∴=;(3)當(dāng)3a<t≤5a時(shí),PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;綜上,可得,∴能大致反映y與x的函數(shù)關(guān)系的圖象是選項(xiàng)D中的圖象.故選D.8、A【解析】

正方體的表面展開(kāi)圖,相對(duì)的面之間一定相隔一個(gè)正方形,根據(jù)這一特點(diǎn)作答.【詳解】∴有“我”字一面的相對(duì)面上的字是國(guó).故答案選A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是專(zhuān)題:正方體相對(duì)兩個(gè)面上的文字,解題的關(guān)鍵是熟練的掌握正方體相對(duì)兩個(gè)面上的文字.9、D【解析】

根據(jù)被開(kāi)放式的非負(fù)性和分母不等于零列出不等式即可解題.【詳解】解:∵函數(shù)y=有意義,∴x-20,即x>2故選D【點(diǎn)睛】本題考查了根式有意義的條件,屬于簡(jiǎn)單題,注意分母也不能等于零是解題關(guān)鍵.10、C【解析】

根據(jù)有理數(shù)的乘方及解一元二次方程-直接開(kāi)平方法得出兩個(gè)有關(guān)m的等式,即可得出.【詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個(gè)值故答案選C.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是有理數(shù)的乘方及解一元二次方程-直接開(kāi)平方法,解題的關(guān)鍵是熟練的掌握有理數(shù)的乘方及解一元二次方程-直接開(kāi)平方法.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、(2,)【解析】過(guò)C作CH于H,由題意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案為(2,).12、x=2【解析】分析:解此方程首先要把它化為我們熟悉的方程(一元二次方程),解新方程,檢驗(yàn)是否符合題意,即可求得原方程的解.詳解:據(jù)題意得:2+2x=x2,∴x2﹣2x﹣2=0,∴(x﹣2)(x+1)=0,∴x1=2,x2=﹣1.∵≥0,∴x=2.故答案為:2.點(diǎn)睛:本題考查了學(xué)生綜合應(yīng)用能力,解方程時(shí)要注意解題方法的選擇,在求值時(shí)要注意解的檢驗(yàn).13、1.【解析】

根據(jù)中位數(shù)的定義找出第20和21個(gè)數(shù)的平均數(shù),即可得出答案.【詳解】解:∵該班有40名同學(xué),∴這個(gè)班同學(xué)年齡的中位數(shù)是第20和21個(gè)數(shù)的平均數(shù).∵14歲的有1人,1歲的有21人,∴這個(gè)班同學(xué)年齡的中位數(shù)是1歲.【點(diǎn)睛】此題考查了中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),熟練掌握中位數(shù)的定義是本題的關(guān)鍵.14、或.【解析】

聯(lián)立方程可得,設(shè),從而得出的圖象在上與x軸只有一個(gè)交點(diǎn),當(dāng)△時(shí),求出此時(shí)m的值;當(dāng)△時(shí),要使在之間有且只有一個(gè)公共點(diǎn),則當(dāng)x=-2時(shí)和x=2時(shí)y的值異號(hào),從而求出m的取值范圍;【詳解】聯(lián)立可得:,令,拋物線與直線在之間有且只有一個(gè)公共點(diǎn),即的圖象在上與x軸只有一個(gè)交點(diǎn),當(dāng)△時(shí),即△解得:,當(dāng)時(shí),當(dāng)時(shí),,滿足題意,當(dāng)△時(shí),令,,令,,,令代入解得:,此方程的另外一個(gè)根為:,故也滿足題意,故的取值范圍為:或故答案為:或.【點(diǎn)睛】此題考查的是根據(jù)二次函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,求函數(shù)中參數(shù)的取值范圍,掌握把函數(shù)的交點(diǎn)問(wèn)題轉(zhuǎn)化為一元二次方程解的問(wèn)題是解決此題的關(guān)鍵.15、1.【解析】分析:所得圓柱的主視圖是一個(gè)矩形,矩形的寬是3,長(zhǎng)是2.詳解:矩形的周長(zhǎng)=3+3+2+2=1.點(diǎn)睛:本題比較容易,考查三視圖和學(xué)生的空間想象能力以及計(jì)算矩形的周長(zhǎng).16、1【解析】

先根據(jù)勾股定理求得AC的長(zhǎng),從而得到C點(diǎn)坐標(biāo),然后根據(jù)平移的性質(zhì),將C點(diǎn)縱軸代入直線解析式求解即可得到答案.【詳解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴AC==1,∴點(diǎn)C的坐標(biāo)為(﹣1,1).當(dāng)y=﹣2x﹣6=1時(shí),x=﹣5,∵﹣1﹣(﹣5)=1,∴點(diǎn)C沿x軸向左平移1個(gè)單位長(zhǎng)度才能落在直線y=﹣2x﹣6上.故答案為1.【點(diǎn)睛】本題主要考查平移的性質(zhì),解此題的關(guān)鍵在于先利用勾股定理求得相關(guān)點(diǎn)的坐標(biāo),然后根據(jù)平移的性質(zhì)將其縱坐標(biāo)代入直線函數(shù)式求解即可.三、解答題(共8題,共72分)17、(1)m≥﹣;(2)m=2.【解析】

(1)利用判別式的意義得到(2m+3)2﹣4(m2+2)≥1,然后解不等式即可;(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,由條件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=1,所以2m+3)2﹣3(m2+2)﹣31=1,然后解關(guān)于m的方程,最后利用m的范圍確定滿足條件的m的值.【詳解】(1)根據(jù)題意得(2m+3)2﹣4(m2+2)≥1,解得m≥﹣;(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,因?yàn)閤1x2=m2+2>1,所以x12+x22=31+x1x2,即(x1+x2)2﹣3x1x2﹣31=1,所以(2m+3)2﹣3(m2+2)﹣31=1,整理得m2+12m﹣28=1,解得m1=﹣14,m2=2,而m≥﹣;所以m=2.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時(shí),.靈活應(yīng)用整體代入的方法計(jì)算.18、見(jiàn)解析【解析】

先作出∠ABC的角平分線,再連接AC,作出AC的垂直平分線,兩條平分線的交點(diǎn)即為所求點(diǎn).【詳解】①以B為圓心,以任意長(zhǎng)為半徑畫(huà)弧,分別交BC、AB于D、E兩點(diǎn);②分別以D、E為圓心,以大于DE為半徑畫(huà)圓,兩圓相交于F點(diǎn);③連接AF,則直線AF即為∠ABC的角平分線;⑤連接AC,分別以A、C為圓心,以大于AC為半徑畫(huà)圓,兩圓相交于F、H兩點(diǎn);⑥連接FH交BF于點(diǎn)M,則M點(diǎn)即為所求.【點(diǎn)睛】本題考查的是角平分線及線段垂直平分線的作法,熟練掌握是解題的關(guān)鍵.19、(1)證明見(jiàn)解析;(2)CE∥AD,理由見(jiàn)解析;(3).【解析】

(1)根據(jù)角平分線的定義得到∠DAC=∠CAB,根據(jù)相似三角形的判定定理證明;(2)根據(jù)相似三角形的性質(zhì)得到∠ACB=∠ADC=90°,根據(jù)直角三角形的性質(zhì)得到CE=AE,根據(jù)等腰三角形的性質(zhì)、平行線的判定定理證明;(3)根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可.【詳解】解:(1)∵AC平分∠DAB,∴∠DAC=∠CAB,又∵AC2=AB?AD,∴AD:AC=AC:AB,∴△ADC∽△ACB;(2)CE∥AD,理由:∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,又∵E為AB的中點(diǎn),∴∠EAC=∠ECA,∵∠DAC=∠CAE,∴∠DAC=∠ECA,∴CE∥AD;(3)∵AD=4,AB=6,CE=AB=AE=3,∵CE∥AD,∴∠FCE=∠DAC,∠CEF=∠ADF,∴△CEF∽△ADF,∴==,∴=.20、這棟高樓的高度是【解析】

過(guò)A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【詳解】過(guò)點(diǎn)A作AD⊥BC于點(diǎn)D,依題意得,,,AD=120,在Rt△ABD中,∴,在Rt△ADC中,∴,∴,答:這棟高樓的高度是.【點(diǎn)睛】本題主要考查了解直角三角形的應(yīng)用-仰角俯角問(wèn)題,難度適中.對(duì)于一般三角形的計(jì)算,常用的方法是利用作高線轉(zhuǎn)化為直角三角形的計(jì)算.21、(1)D(2,2);(2);(3)【解析】

(1)令x=0求出A的坐標(biāo),根據(jù)頂點(diǎn)坐標(biāo)公式或配方法求出頂點(diǎn)B的坐標(biāo)、對(duì)稱(chēng)軸直線,根據(jù)點(diǎn)A與點(diǎn)D關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),確定D點(diǎn)坐標(biāo).(2)根據(jù)點(diǎn)B、D的坐標(biāo)用待定系數(shù)法求出直線BD的解析式,令y=0,即可求得M點(diǎn)的坐標(biāo).(3)根據(jù)點(diǎn)A、B的坐標(biāo)用待定系數(shù)法求出直線AB的解析式,求直線OD的解析式,進(jìn)而求出交點(diǎn)N的坐標(biāo),得到ON的長(zhǎng).過(guò)A點(diǎn)作AE⊥OD,可證△AOE為等腰直角三角形,根據(jù)OA=2,可求得AE、OE的長(zhǎng),表示出EN的長(zhǎng).根據(jù)tan∠OMB=tan∠ONA,得到比例式,代入數(shù)值即可求得a的值.【詳解】(1)當(dāng)x=0時(shí),,∴A點(diǎn)的坐標(biāo)為(0,2)∵∴頂點(diǎn)B的坐標(biāo)為:(1,2-a),對(duì)稱(chēng)軸為x=1,∵點(diǎn)A與點(diǎn)D關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng)∴D點(diǎn)的坐標(biāo)為:(2,2)(2)設(shè)直線BD的解析式為:y=kx+b把B(1,2-a)D(2,2)代入得:,解得:∴直線BD的解析式為:y=ax+2-2a當(dāng)y=0時(shí),ax+2-2a=0,解得:x=∴M點(diǎn)的坐標(biāo)為:(3)由D(2,2)可得:直線OD解析式為:y=x設(shè)直線AB的解析式為y=mx+n,代入A(0,2)B(1,2-a)可得:解得:∴直線AB的解析式為y=-ax+2聯(lián)立成方程組:,解得:∴N點(diǎn)的坐標(biāo)為:()ON=()過(guò)A點(diǎn)作AE⊥OD于E點(diǎn),則△AOE為等腰直角三角形.∵OA=2∴OE=AE=,EN=ON-OE=()-=)∵M(jìn),C(1,0),B(1,2-a)∴MC=,BE=2-a∵∠OMB=∠ONA∴tan∠OMB=tan∠ONA∴,即解得:a=或∵拋物線開(kāi)口向下,故a<0,∴a=舍去,【點(diǎn)睛】本題是一道二次函數(shù)與一次函數(shù)及三角函數(shù)綜合題,掌握并靈活應(yīng)用二次函數(shù)與一次函數(shù)的圖象與性質(zhì),以及構(gòu)建直角三角形借助點(diǎn)的坐標(biāo)使用相等角的三角函數(shù)是解題的關(guān)鍵.22、(1)證明見(jiàn)解析(2)90°(3)AP=CE【解析】

(1)、根據(jù)正方形得出AB=BC,∠ABP=∠CBP=45°,結(jié)合PB=PB得出△ABP≌△CBP,從而得出結(jié)論;(2)、根據(jù)全等得出∠BAP=∠BCP,∠DAP=∠DCP,根據(jù)PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先證明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,從而得出∠CPF=∠EDF=60°,然后得出△EPC是等邊三角形,從而得出AP=CE.【詳解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵PB=PB∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(對(duì)頂角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵PB=PB∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(對(duì)頂角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等邊三角形,∴PC=CE,∴AP=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論