版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024年遼寧省沈陽市126中學八年級數(shù)學第二學期期末檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.對于函數(shù),下列結(jié)論正確的是()A.它的圖象必經(jīng)過點(-1,1) B.它的圖象不經(jīng)過第三象限C.當時, D.的值隨值的增大而增大2.如圖,某工廠有甲,乙兩個大小相同的蓄水池,且中間有管道連通,現(xiàn)要向甲池中注水,若單位時間內(nèi)的注水量不變,那么從注水開始,乙水池水面上升的高度
與注水時間
之間的函數(shù)關系圖象可能是如圖,某工廠有甲,乙兩個大小相同的蓄水池,且中間有管道連通,現(xiàn)要向甲池中注水,若單位時間內(nèi)的注水量不變,那么從注水開始,乙水池水面上升的高度
與注水時間
之間的函數(shù)關系圖象可能是()A. B. C. D.3.關于的一元二次方程,下列說法錯誤的是()A.方程無實數(shù)解B.方程有一個實數(shù)解C.有兩個相等的實數(shù)解D.方程有兩個不相等的實數(shù)解4.對于數(shù)據(jù):80,88,85,85,83,83,1.下列說法中錯誤的有()①這組數(shù)據(jù)的平均數(shù)是1;②這組數(shù)據(jù)的眾數(shù)是85;③這組數(shù)據(jù)的中位數(shù)是1;④這組數(shù)據(jù)的方差是2.A.1個 B.2個 C.3個 D.4個5.計算的的結(jié)果是()A. B. C.4 D.166.已知點,,都在直線上,則,,的大小關系是()A. B. C. D.7.直角三角形中,兩條直角邊的邊長分別為6和8,則斜邊上的中線長是()A.10 B.8 C.6 D.58.如圖,將矩形ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,已知∠BDC=62°,則∠DFE的度數(shù)為()A.31° B.28° C.62° D.56°9.若是完全平方式,則符合條件的k的值是()A.±3 B.±9 C.-9 D.910.如圖,已知Rt△ABC中,∠ABC=90°,分別以AB、BC、AC為直徑作半圓,面積分別記S1,S2,S3,若S1=4,S2=9,則S3的值為()A.13 B.5 C.11 D.311.如圖,矩形中,對角線、交于點.若,,則的長為()A.6 B.5 C.4 D.312.已知關于x的方程x2-kx+6=0有兩個實數(shù)根,則k的值不可能是()A.5 B.-8 C.2 D.4二、填空題(每題4分,共24分)13.古語說:“春眠不覺曉”,每到初春時分,想必有不少人變得嗜睡,而且睡醒后精神不佳.我們可以在飲食方面進行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山藥、麥片.春天即將來臨時,某商人抓住商機,購進甲、乙、丙三種麥片,已知銷售每袋甲種麥片的利潤率為10%,每袋乙種麥片的利潤率為20%,每袋丙種麥片的利潤率為30%,當售出的甲、乙、丙三種麥片的袋數(shù)之比為1:3:1時,商人得到的總利潤率為22%;當售出的甲、乙、丙三種變片的袋數(shù)之比為3:2:1時,商人得到的總利潤率為20%:那么當售出的甲、乙、丙三種麥片的袋數(shù)之比為2:3;4時,這個商人得到的總利潤率為_____(用百分號表最終結(jié)果).14.如圖,點B、C分別在直線y=2x和直線y=kx上,A、D是x軸上兩點,若四邊形ABCD為矩形,且AB:AD=1:2,則k的值是_____.15.從沿北偏東的方向行駛到,再從沿南偏西方向行駛到,則______.16.為選派詩詞大會比賽選手,經(jīng)過三輪初賽,甲、乙、丙、丁四位選手的平均成績都是86分,方差分別是s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,若要從中選一位發(fā)揮穩(wěn)定的選手參加決賽你認為派__________________去參賽更合適(填“甲”或“乙”或“丙”或“丁”)17.如圖,△ACB和△ECD都是等腰直角三角形,△ACB的頂點A在△ECD的斜邊DE上,若,則=___.18.在正方形ABCD中,對角線AC=2cm,那么正方形ABCD的面積為_____.三、解答題(共78分)19.(8分)如圖,在等腰直角三角形ABC中,D是AB的中點,E,F(xiàn)分別是AC,BC.上的點(點E不與端點A,C重合),且連接EF并取EF的中點O,連接DO并延長至點G,使,連接DE,DF,GE,GF(1)求證:四邊形EDFG是正方形;(2)直接寫出當點E在什么位置時,四邊形EDFG的面積最小?最小值是多少?20.(8分)如圖,一次函數(shù)y=2x+4的圖象分別與x軸,y軸教育點A、點B、點C為x軸一動點。(1)求A,B兩點的坐標;(2)當ΔABC的面積為6時,求點C的坐標;(3)平面內(nèi)是否存在一點D,使四邊形ACDB使菱形,若存在,請直接寫出點D的坐標;若不存在,請說明理由。21.(8分)問題探究(1)請在圖①中作出兩條直線,使它們將圓面四等分;(2)如圖②,是正方形內(nèi)一定點,請在圖②中作出兩條直線(要求其中一條直線必須過點),使它們將正方形的面積四等分:問題解決(3)如圖③,在四邊形中,,點是的中點如果,且,那么在邊上足否存在一點,使所在直線將四邊形的面積分成相等的兩部分?若存在,求出的長:若不存在,說明理由.22.(10分)如圖,已知平行四邊形ABCD的周長是32cm,,,,E,F(xiàn)是垂足,且(1)求的度數(shù);(2)求BE,DF的長.23.(10分)如圖1,正方形中,點、的坐標分別為,,點在第一象限.動點在正方形的邊上,從點出發(fā)沿勻速運動,同時動點以相同速度在軸上運動,當點運動到點時,兩點同時停止運動,設運動時間為秒.當點在邊上運動時,點的橫坐標(單位長度)關于運動時間(秒)的函數(shù)圖象如圖2所示.(1)正方形邊長_____________,正方形頂點的坐標為__________________;(2)點開始運動時的坐標為__________,點的運動速度為_________單位長度/秒;(3)當點運動時,點到軸的距離為,求與的函數(shù)關系式;(4)當點運動時,過點分別作軸,軸,垂足分別為點、,且點位于點下方,與能否相似,若能,請直接寫出所有符合條件的的值;若不能,請說明理由.24.(10分)已知一次函數(shù)的圖象過點A(0,3)和點B(3,0),且與正比例函數(shù)的圖象交于點P.(1)求函數(shù)的解析式和點P的坐標.(2)畫出兩個函數(shù)的圖象,并直接寫出當時的取值范圍.(3)若點Q是軸上一點,且△PQB的面積為8,求點Q的坐標.25.(12分)正方形ABCD中,點O是對角線DB的中點,點P是DB所在直線上的一個動點,PE⊥BC于E,PF⊥DC于F.(1)當點P與點O重合時(如圖①),猜測AP與EF的數(shù)量及位置關系,并證明你的結(jié)論;(2)當點P在線段DB上(不與點D、O、B重合)時(如圖②),探究(1)中的結(jié)論是否成立?若成立,寫出證明過程;若不成立,請說明理由;(3)當點P在DB的長延長線上時,請將圖③補充完整,并判斷(1)中的結(jié)論是否成立?若成立,直接寫出結(jié)論;若不成立,請寫出相應的結(jié)論.
26.《九章算術》卷九“勾股”中記載:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問霞長幾何.注釋:今有正方形水池邊長1丈,蘆葦生長在中央,長出水面1尺.將蘆葦向池岸牽引,恰好與水岸齊,問蘆葦?shù)拈L度(一丈等于10尺).解決下列問題:(1)示意圖中,線段的長為______尺,線段的長為______尺;(2)求蘆葦?shù)拈L度.
參考答案一、選擇題(每題4分,共48分)1、B【解析】
將x=-1代入一次函數(shù)解析式求出y值即可得出A錯誤;由一次函數(shù)解析式結(jié)合一次函數(shù)系數(shù)與圖象的關系即可得出B正確;求出一次函數(shù)與x軸的交點即可得出C錯誤;由一次函數(shù)一次項系數(shù)k=-3<0即可得出D不正確.此題得解.【詳解】A、令y=-3x+4中x=-1,則y=8,∴該函數(shù)的圖象不經(jīng)過點(-1,1),即A錯誤;B、∵在y=-3x+4中k=-3<0,b=4>0,∴該函數(shù)圖象經(jīng)過第一、二、四象限,即B正確;C、令y=-3x+4中y=0,則-3x+4=0,解得:x=,∴該函數(shù)的圖象與x軸的交點坐標為(,0),∴當x<時,y>0,故C錯誤;D、∵在y=-3x+4中k=-3<0,∴y的值隨x的值的增大而減小,即D不正確.故選:B.【點睛】本題考查了一次函數(shù)的性質(zhì)以及一次函數(shù)圖象與系數(shù)的關系,解題的關鍵是逐條分析四個選項.本題屬于基礎題,難度不大,解決該題時,熟悉一次函數(shù)的性質(zhì)、一次函數(shù)圖象上點的坐標特征以及一次函數(shù)圖象與系數(shù)的關系是解題的關鍵.2、D【解析】
根據(jù)注水后水進入水池情況,結(jié)合特殊點的實際意義即可求出答案.【詳解】解:該蓄水池就是一個連通器.開始時注入甲池,乙池無水,當甲池中水位到達與乙池的連接處時,乙池才開始注水,所以A、B不正確,此時甲池水位不變,所有水注入乙池,所以水位上升快.當乙池水位到達連接處時,所注入的水使甲乙兩個水池同時升高,所以升高速度變慢.在乙池水位超過連通部分,甲和乙部分同時升高,但蓄水池底變小,此時比連通部分快.故選:D.【點睛】主要考查了函數(shù)圖象的讀圖能力.要能根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結(jié)合實際意義得到正確的結(jié)論.3、B【解析】
將各選項的k帶入方程驗證,即可得到答案.【詳解】解:A,當k=2017,k-2019==-2,該方程無實數(shù)解,故正確;B,當k=2018,k-2019==-1,該方程無實數(shù)解,故錯誤;C,當k=2019,k-2019==0,解得x=1,故正確;D,當k=2020,k-2019=2020-2019=1,解得x=0或x=2,故正確;因此答案為B.【點睛】本題主要考查二元一次方程的特點,把k值代入方程驗證是解答本題的關鍵.4、B【解析】由平均數(shù)公式可得這組數(shù)據(jù)的平均數(shù)為1;在這組數(shù)據(jù)中83出現(xiàn)了2次,85出現(xiàn)了2次,其他數(shù)據(jù)均出現(xiàn)了1次,所以眾數(shù)是83和85;將這組數(shù)據(jù)從小到大排列為:80、83、83、1、85、85、88,可得其中位數(shù)是1;其方差為,故選B.5、C【解析】
根據(jù)算術平方根和平方根進行計算即可【詳解】=4故選:C【點睛】此題考查算術平方根和平方根,掌握運算法則是解題關鍵6、C【解析】
中,,所以y隨x的增大而減小,依據(jù)三點的x值的大小即可確定y值的大小關系.【詳解】解:y隨x的增大而減小又故答案為:C【點睛】本題考查了一次函數(shù)的性質(zhì),正確理解并應用其性質(zhì)是解題的關鍵.7、D【解析】
如圖,根據(jù)勾股定理求出AB,根據(jù)直角三角形斜邊上中線求出CD=12AB【詳解】解:如圖,∵∠ACB=90°,AC=6,BC=8,由勾股定理得:AB=AC2+∵CD是△ABC中線,∴CD=12AB=12×故選D.【點睛】本題主要考查對勾股定理,直角三角形斜邊上的中線等知識點的理解和掌握,能推出CD=12AB8、D【解析】
先利用互余計算出∠FDB=28°,再根據(jù)平行線的性質(zhì)得∠CBD=∠FDB=28°,接著根據(jù)折疊的性質(zhì)得∠FBD=∠CBD=28°,然后利用三角形外角性質(zhì)計算∠DFE的度數(shù).【詳解】解:∵四邊形ABCD為矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿對角線BD折疊,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故選D.【點睛】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.9、D【解析】
根據(jù)是一個完全平方式,可得,據(jù)此求解.【詳解】解:∵是一個完全平方式∴∴故選:D【點睛】此題主要考查了完全平方公式的應用,要熟練掌握,解答此題的關鍵是要明確:(a±b)1=a1±1ab+b1.10、A【解析】
由扇形的面積公式可知S1=?π?AC2,S2=?π?BC2,S3=?π?AB2,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;【詳解】解:∵S1=?π?AC2,S2=?π?BC2,S3=?π?AB2,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;∵S1=4,S2=9,∴S3=1.故選A.【點睛】本題考查勾股定理的應用,難度適中,解題關鍵是對勾股定理的熟練掌握及靈活運用,記住S1+S2=S3.11、B【解析】
由矩形的性質(zhì)可得:∠ABC=90°,OA=OC=OB=OD=1,∠AOB=2∠ACB=60°,△AOB為等邊三角形,故AB=OA=1.【詳解】解:∵四邊形ABCD是矩形,∴OA=OC=OB=OD=AC=1,∠ABC=90°,∴∠OBC=∠ACB=30°∵∠AOB=∠OBC+∠ACB∴∠AOB=60°∵OA=OB∴△AOB是等邊三角形∴AB=OA=1故選:B【點睛】本題考查了矩形的性質(zhì),等邊三角形的判定和性質(zhì),等腰三角形判定和性質(zhì),是基礎題,比較簡單.12、D【解析】
根據(jù)判別式的意義得到k2≥24,然后對各選項進行判斷.【詳解】解:根據(jù)題意得△=(-k)2-4×6≥0,即k2≥24,故選:D.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.二、填空題(每題4分,共24分)13、25%.【解析】
設甲、乙、丙三種蜂蜜的進價分別為a、b、c,丙蜂蜜售出瓶數(shù)為cx,則當售出的甲、乙、丙蜂蜜瓶數(shù)之比為1:3:1時,甲、乙蜂蜜售出瓶數(shù)分別為ax、3bx;當售出的甲、乙、丙蜂蜜瓶數(shù)之比為3:2:1時,甲、乙蜂蜜售出瓶數(shù)分別為3ax、2bx;列出方程,解方程求出,即可得出結(jié)果.【詳解】解:設甲、乙、丙三種麥片的進價分別為a、b、c,丙麥片售出袋數(shù)為cx,由題意得:,解得:,∴,故答案為:25%.【點睛】本題考查了方程思想解決實際問題,解題的關鍵是通過題意列出方程,得出a、b、c的關系,進而求出利潤率.14、【解析】
根據(jù)矩形的性質(zhì)可設點A的坐標為(a,0),再根據(jù)點B、C分別在直線y=2x和直線y=kx上,可得點B、C、D的坐標,再由AB:AD=1:2,求得k的值即可.【詳解】解:∵四邊形ABCD為矩形,∴設點A的坐標為(a,0)(a>0),則點B的坐標為(a,2a),點C的坐標為(a,2a),點D的坐標為(a,0),∴AB=2a,AD=(﹣1)a.∵AB:AD=1:2,∴﹣1=2×2,∴k=.故答案為:.【點睛】一次函數(shù)在幾何圖形中的實際應用是本題的考點,熟練掌握矩形的性質(zhì)是解題的關鍵.15、40【解析】
根據(jù)方位角的概念,畫圖正確表示出行駛的過程,再根據(jù)已知轉(zhuǎn)向的角度結(jié)合三角形的內(nèi)角和與外角的關系求解.【詳解】如圖,A沿北偏東60°的方向行駛到B,則∠BAC=90°-60°=30°,
B沿南偏西20°的方向行駛到C,則∠BCO=90°-20°=70°,
又∵∠ABC=∠BCO-∠BAC,∴∠ABC=70°-30°=40°.故答案為:40°【點睛】解答此類題需要從運動的角度,正確畫出方位角,再結(jié)合三角形的內(nèi)角和與外角的關系求解.16、甲【解析】
根據(jù)方差的定義,方差越小數(shù)據(jù)越穩(wěn)定即可求解.【詳解】解:∵s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,而1.5<2.6<3.5<3.68,∴甲的成績最穩(wěn)定,∴派甲去參賽更好,故答案為甲.【點睛】本題考查了方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.17、【解析】
根據(jù)等邊三角形的性質(zhì)就可以得出△AEC≌△BDC,就可以得出AE=BD,∠E=∠BDC,由等腰直角三角形的性質(zhì)就可以得出∠ADB=90°,由勾股定理就可以得出:,再設AE=k,則AD=3k,BD=k,求出BC=k,進而得到的值.【詳解】∵△ACB與△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,∴,∠ECD?∠ACD=∠ACB?∠ACD,∴∠ACE=∠BCD.在△AEC和△BDC中,,∴△AEC≌△BDC(SAS),∴AE=BD,∠E=∠BDC,∴∠BDC=45°,∴∠BDC+∠ADC=90°,即∠ADB=90°.∴.∵,∴可設AE=k,則AD=3k,BD=k,∴,∴BC=,∴.故答案為:.【點睛】此題考查勾股定理、等腰直角三角形、全等三角形的判定與性質(zhì),解題關鍵在于“設k法”列出比例式即可.18、2【解析】
根據(jù)正方形的面積公式可求正方形面積.【詳解】正方形面積==2故答案為2.【點睛】本題考查了正方形的性質(zhì),利用正方形的面積=對角線積的一半解決問題.三、解答題(共78分)19、(1)詳見解析;(2)當點E為線段AC的中點時,四邊形EDFG的面積最小,該最小值為4【解析】
(1)連接CD,根據(jù)等腰直角三角形的性質(zhì)可得出∠A=∠DCF=45°、AD=CD,結(jié)合AE=CF可證出△ADE≌△CDF(SAS),根據(jù)全等三角形的性質(zhì)可得出DE=DF、ADE=∠CDF,通過角的計算可得出∠EDF=90°,再根據(jù)O為EF的中點、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可證出四邊形EDFG是正方形;(2)過點D作DE′⊥AC于E′,根據(jù)等腰直角三角形的性質(zhì)可得出DE′的長度,從而得出2≤DE<2,再根據(jù)正方形的面積公式即可得出四邊形EDFG的面積的最小值.【詳解】(1)證明:連接CD,如圖1所示.∵為等腰直角三角形,,D是AB的中點,∴在和中,∴,∴,∵,∴,∴為等腰直角三角形.∵O為EF的中點,,∴,且,∴四邊形EDFG是正方形;(2)解:過點D作于E′,如圖2所示.∵為等腰直角三角形,,∴,點E′為AC的中點,∴(點E與點E′重合時取等號).∴∴當點E為線段AC的中點時,四邊形EDFG的面積最小,該最小值為4【點睛】本題考查了正方形的判定與性質(zhì)、等腰直角三角形以及全等三角形的判定與性質(zhì),解題的關鍵是:(1)找出GD⊥EF且GD=EF;(2)根據(jù)正方形的面積公式找出4≤S四邊形EDFG<1.20、(1)點A(-2,0),B(0,4);(2)點C(-5,0)或(1,0);(3)D(-25,4)或(25,【解析】
(1)利用坐標軸上點的特點求解即可得出結(jié)論;(2)根據(jù)△AOB的面積,可得出點C的坐標;(3)根據(jù)勾股定理求出AB的長,再利用菱形的性質(zhì)可得結(jié)果,分兩種情況討論.【詳解】(1)當x=0,y=4當y=0,x=-2∴點A(-2,0),B(0,4)(2)因為A(-2,0),B(0,4)∴OA=2,OB=4ΔABC的面積為-因為ΔABC的面積為6∴AC=3∵A(-2,0)∴點C(-5,0)或(1,0)(3)存在,理由:①如圖:點C再A點左側(cè),∵A(-2,0),B(0,4),∴AB=22+42=25,∵四邊形ACDB為菱形,∴AC=AB=25,∵AC②如圖:點C再A點右側(cè),∵A(-2,0),B(0,4),∴AB=22+42=25,∵四邊形ACDB為菱形,∴AC=AB=25,∵AC//__BD,∴AC=BD=AB=【點睛】本題考查了一次函數(shù)的應用、菱形的性質(zhì)以及三角形的面積問題,注意掌握數(shù)形結(jié)合思想和分類討論的思想.21、(1)答案見解析;(2)答案見解析;(3)存在,BQ=b【解析】
(1)畫出互相垂直的兩直徑即可;(2)連接AC、BD交于O,作直線OM,分別交AD于P,交BC于Q,過O作EF⊥OM交DC于F,交AB于E,則直線EF、OM將正方形的面積四等分,根據(jù)三角形的面積公式和正方形的性質(zhì)求出即可;(3)當BQ=CD=b時,PQ將四邊形ABCD的面積二等份,連接BP并延長交CD的延長線于點E,證△ABP≌△DEP求出BP=EP,連接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP,即可得出S四邊形ABQP=S四邊形CDPQ即可.【詳解】解:(1)如圖1所示,(2)連接AC、BD交于O,作直線OM,分別交AD于P,交BC于Q,過O作EF⊥OM交DC于F,交AB于E,則直線EF、OM將正方形的面積四等分,理由是:∵點O是正方形ABCD的對稱中心,∴AP=CQ,EB=DF,在△AOP和△EOB中∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE,∴∠AOP=∠BOE,∵OA=OB,∠OAP=∠EBO=45°,∴△AOP≌△EOB,∴AP=BE=DF=CQ,設O到正方形ABCD一邊的距離是d,則(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,∴S四邊形AEOP=S四邊形BEOQ=S四邊形CQOF=S四邊形DPOF,直線EF、OM將正方形ABCD面積四等份;(3)存在,當BQ=CD=b時,PQ將四邊形ABCD的面積二等份,理由是:如圖③,連接BP并延長交CD的延長線于點E,∵AB∥CD,∴∠A=∠EDP,∵在△ABP和△DEP中∴△ABP≌△DEP(ASA),∴BP=EP,連接CP,∵△BPC的邊BP和△EPC的邊EP上的高相等,又∵BP=EP,∴S△BPC=S△EPC,作PF⊥CD,PG⊥BC,則BC=AB+CD=DE+CD=CE,由三角形面積公式得:PF=PG,在CB上截取CQ=DE=AB=a,則S△CQP=S△DEP=S△ABP∴S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP即:S四邊形ABQP=S四邊形CDPQ,∵BC=AB+CD=a+b,∴BQ=b,∴當BQ=b時,直線PQ將四邊形ABCD的面積分成相等的兩部分.【點睛】本題考查了正方形性質(zhì),菱形性質(zhì),三角形的面積等知識點的應用,主要考查學生綜合運用性質(zhì)進行推理的能力,注意:等底等高的三角形的面積相等.22、(1)∠C=60°;(2)BE=5cm,DF=3cm.【解析】
(1)結(jié)合已知條件,由四邊形的內(nèi)角和為360°即可解答;(2)根據(jù)平行四邊形的性質(zhì)結(jié)合已知條件求得AB=10cm,BC=6cm.再根據(jù)30°角直角三角形的性質(zhì)即可求解.【詳解】(1)∵AE⊥BC,AF⊥CD,∴∠AFD=∠AEB=90°,∴∠EAF+∠C=360°﹣90°﹣90°=180°.又∵∠EAF=2∠C,∴∠C=60°.(2)∵?ABCD的周長是32cm,,∴AB=10cm,BC=6cm.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠ABE=∠C=60°,在Rt△ABE中,BE=AB,∵AB=10cm,∴BE=5cm,同理DF=3cm.∴BE=5cm,DF=3cm.【點睛】本題考查了平行四邊形的性質(zhì)及30°角直角三角形的性質(zhì),熟練運用有關性質(zhì)是解決問題的關鍵.23、(3)30,(35.2);(2)(3,0),3;(3)d=t﹣5;(5)t的值為3s或s或s.【解析】
(3)過點B作BH⊥y軸于點H,CF⊥HB交HB的延長線于點F交x軸于G.利用全等三角形的性質(zhì)解決問題即可.(2)根據(jù)題意,易得Q(3,0),結(jié)合P、Q得運動方向、軌跡,分析可得答案;(3)分兩種情形:①如圖3﹣3中,當0<t≤30時,作PN⊥x軸于N,交HF于K.②如圖3﹣2中,當30<t≤20時,作PN⊥x軸于N,交HF于K.分別求解即可解決問題.(5)①如圖5﹣3中,當點P在線段AB上時,有兩種情形.②如圖5﹣2中,當點P在線段BC上時,只有滿足時,△APM∽△PON,利用(3)中結(jié)論構建方程即可解決問題.【詳解】解:(3)過點B作BH⊥y軸于點H,CF⊥HB交HB的延長線于點F交x軸于G.∵∠ABC=90°=∠AHB=∠BFC∴∠ABH+∠CBF=90°,∠ABH+∠BAH=90°,∴∠BAH=∠CBF,∵AB=BC,∴△ABH≌△BCF.∴BH=CF=8,AH=BF=3.∴AB==30,HF=35,∴OG=FH=35,CG=8+5=2.∴所求C點的坐標為(35,2).故答案為30,(35,2)(2)根據(jù)題意,易得Q(3,0),點P運動速度每秒鐘3個單位長度.故答案為(3,0),3.(3)①如圖3﹣3中,當0<t≤30時,作PN⊥x軸于N,交HF于K.易知四邊形OHKN是矩形,可得OH=KN=5,∵PK∥AH,∴,∴,∴PK=(30﹣t),∴d=PK+KN=﹣t+30.②如圖3﹣2中,當30<t≤20時,作PN⊥x軸于N,交HF于K.同法可得PK=(t﹣30),∴d=PK+KN=t﹣5.(5)①如圖5﹣3中,當點P在線段AB上時,有兩種情形:當時,△APM與△OPN相似,可得,解得t=3.當時,△APM與△OPN相似,可得,解得t=.②如圖5﹣2中,當點P在線段BC上時,只有滿足時,△APM∽△PON,可得:∠OPN=∠PAM=∠AOP,∵PM⊥OA,∴AM=OM=PN=5,由(3)②可知:5=t﹣5,解得t=.綜上所述,拇指條件的t的值為3s或s或s.【點睛】本題屬于相似形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形或全等三角形解決問題,需要利用參數(shù)構建方程解決問題,屬于中考壓軸題.24、(1),點的坐標為;(2)函數(shù)圖象見解析,x<1;(2)點Q的坐標為(-5,0)或(11,0).【解析】
(1)根據(jù)待定系數(shù)法求出一次函數(shù)解析式,與聯(lián)立方程組即可求出點P坐標;(2)畫出函數(shù)圖象,根據(jù)圖像即可寫出當時的取值范圍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46852-2025大型游艇船上生活質(zhì)量評估穩(wěn)定性和適航性
- 企業(yè)危機管理與公關應對手冊(標準版)
- 會議管理制度
- 公共交通行業(yè)服務質(zhì)量評價制度
- 車站客運服務評價考核制度
- 辦公室員工招聘與錄用制度
- 2026年武漢東湖新技術開發(fā)區(qū)街道招聘文明實踐崗備考題庫完整答案詳解
- 2026年重慶機床(集團)有限責任公司磐聯(lián)傳動科技分公司招聘6人備考題庫附答案詳解
- 2026年渭南市“縣管鎮(zhèn)聘村用”專項醫(yī)療人才招聘41人備考題庫及1套完整答案詳解
- 2026年楚雄市愛昕健康養(yǎng)老產(chǎn)業(yè)有限公司招聘啟示備考題庫參考答案詳解
- 2026年陜西省森林資源管理局局屬企業(yè)公開招聘工作人員備考題庫帶答案詳解
- 2026廣東深圳市龍崗中心醫(yī)院招聘聘員124人筆試備考試題及答案解析
- 2025年同工同酬臨夏市筆試及答案
- 2026年孝昌縣供水有限公司公開招聘正式員工備考題庫及答案詳解(考點梳理)
- 2025屆河北省唐山市高二生物第一學期期末統(tǒng)考試題含解析
- 中藥常見不良反應與安全用藥課件
- 淺談新課改下如何提高城鎮(zhèn)小學生的英語能力
- YY/T 1302.1-2015環(huán)氧乙烷滅菌的物理和微生物性能要求第1部分:物理要求
- GB/T 32065.8-2020海洋儀器環(huán)境試驗方法第8部分:溫度變化試驗
- GB/T 31765-2015高密度纖維板
- GB/T 28701-2012脹緊聯(lián)結(jié)套
評論
0/150
提交評論