福建省泉州市泉外、東海、七中學、恒興四校2024屆中考四模數(shù)學試題含解析_第1頁
福建省泉州市泉外、東海、七中學、恒興四校2024屆中考四模數(shù)學試題含解析_第2頁
福建省泉州市泉外、東海、七中學、恒興四校2024屆中考四模數(shù)學試題含解析_第3頁
福建省泉州市泉外、東海、七中學、恒興四校2024屆中考四模數(shù)學試題含解析_第4頁
福建省泉州市泉外、東海、七中學、恒興四校2024屆中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

福建省泉州市泉外、東海、七中學、恒興四校2024屆中考四模數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.互聯(lián)網(wǎng)“微商”經(jīng)營已成為大眾創(chuàng)業(yè)新途徑,某微信平臺上一件商品標價為200元,按標價的五折銷售,仍可獲利20元,則這件商品的進價為()A.120元 B.100元 C.80元 D.60元2.下列運算結果是無理數(shù)的是()A.3× B. C. D.3.為了解某校初三學生的體重情況,從中隨機抽取了80名初三學生的體重進行統(tǒng)計分析,在此問題中,樣本是指()A.80 B.被抽取的80名初三學生C.被抽取的80名初三學生的體重 D.該校初三學生的體重4.運用乘法公式計算(3﹣a)(a+3)的結果是()A.a(chǎn)2﹣6a+9 B.a(chǎn)2﹣9 C.9﹣a2 D.a(chǎn)2﹣3a+95.關于2、6、1、10、6的這組數(shù)據(jù),下列說法正確的是()A.這組數(shù)據(jù)的眾數(shù)是6 B.這組數(shù)據(jù)的中位數(shù)是1C.這組數(shù)據(jù)的平均數(shù)是6 D.這組數(shù)據(jù)的方差是106.如圖所示的幾何體的左視圖是()A. B. C. D.7.下列計算中,正確的是()A. B. C. D.8.如圖,先鋒村準備在坡角為的山坡上栽樹,要求相鄰兩樹之間的水平距離為米,那么這兩樹在坡面上的距離為()A. B. C.5cosα D.9.方程的解是A.3 B.2 C.1 D.010.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在矩形ABCD中,對角線AC、BD相交于點O,∠AOB=60°,AC=6cm,則AB的長是_____.12.若,則=.13.如圖,在△ABC中,∠A=70°,∠B=50°,點D,E分別為AB,AC上的點,沿DE折疊,使點A落在BC邊上點F處,若△EFC為直角三角形,則∠BDF的度數(shù)為______.14.在△ABC中,AB=13cm,AC=10cm,BC邊上的高為11cm,則△ABC的面積為______cm1.15.如圖,正方形ABCD的邊長為4,點M在邊DC上,M、N兩點關于對角線AC對稱,若DM=1,則tan∠ADN=.16.如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.三、解答題(共8題,共72分)17.(8分)在一個不透明的布袋里裝有4個標有1、2、3、4的小球,它們的形狀、大小完全相同,李強從布袋中隨機取出一個小球,記下數(shù)字為x,王芳在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點M的坐標畫樹狀圖列表,寫出點M所有可能的坐標;求點在函數(shù)的圖象上的概率.18.(8分)如圖,直線y=﹣x+2與反比例函數(shù)(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.(1)求a,b的值及反比例函數(shù)的解析式;(2)若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標;(3)在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.19.(8分)先化簡,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.20.(8分)如圖,小華和同伴在春游期間,發(fā)現(xiàn)在某地小山坡的點E處有一棵盛開的桃花的小桃樹,他想利用平面鏡測量的方式計算一下小桃樹到山腳下的距離,即DE的長度,小華站在點B的位置,讓同伴移動平面鏡至點C處,此時小華在平面鏡內(nèi)可以看到點E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小華的身高為1.8米,請你利用以上的數(shù)據(jù)求出DE的長度.(結果保留根號)21.(8分)如圖,⊙O是△ABC的外接圓,F(xiàn)H是⊙O的切線,切點為F,F(xiàn)H∥BC,連結AF交BC于E,∠ABC的平分線BD交AF于D,連結BF.(1)證明:AF平分∠BAC;(2)證明:BF=FD;(3)若EF=4,DE=3,求AD的長.22.(10分)如圖,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,請僅用無刻度直尺作圖:在圖1中作出圓心O;在圖2中過點B作BF∥AC.23.(12分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.24.某超市預測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.第一批飲料進貨單價多少元?若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

解:設該商品的進價為x元/件,依題意得:(x+20)÷=200,解得:x=1.∴該商品的進價為1元/件.故選C.2、B【解析】

根據(jù)二次根式的運算法則即可求出答案.【詳解】A選項:原式=3×2=6,故A不是無理數(shù);B選項:原式=,故B是無理數(shù);C選項:原式==6,故C不是無理數(shù);D選項:原式==12,故D不是無理數(shù)故選B.【點睛】考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.3、C【解析】

總體是指考查的對象的全體,個體是總體中的每一個考查的對象,樣本是總體中所抽取的一部分個體,而樣本容量則是指樣本中個體的數(shù)目.我們在區(qū)分總體、個體、樣本、樣本容量,這四個概念時,首先找出考查的對象.從而找出總體、個體.再根據(jù)被收集數(shù)據(jù)的這一部分對象找出樣本,最后再根據(jù)樣本確定出樣本容量.【詳解】樣本是被抽取的80名初三學生的體重,

故選C.【點睛】此題考查了總體、個體、樣本、樣本容量,解題要分清具體問題中的總體、個體與樣本,關鍵是明確考查的對象.總體、個體與樣本的考查對象是相同的,所不同的是范圍的大?。畼颖救萘渴菢颖局邪膫€體的數(shù)目,不能帶單位.4、C【解析】

根據(jù)平方差公式計算可得.【詳解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故選C.【點睛】本題主要考查平方差公式,解題的關鍵是應用平方差公式計算時,應注意以下幾個問題:①左邊是兩個二項式相乘,并且這兩個二項式中有一項完全相同,另一項互為相反數(shù);②右邊是相同項的平方減去相反項的平方.5、A【解析】

根據(jù)方差、算術平均數(shù)、中位數(shù)、眾數(shù)的概念進行分析.【詳解】數(shù)據(jù)由小到大排列為1,2,6,6,10,它的平均數(shù)為(1+2+6+6+10)=5,數(shù)據(jù)的中位數(shù)為6,眾數(shù)為6,數(shù)據(jù)的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故選A.考點:方差;算術平均數(shù);中位數(shù);眾數(shù).6、A【解析】本題考查的是三視圖.左視圖可以看到圖形的排和每排上最多有幾層.所以選擇A.7、D【解析】

根據(jù)積的乘方、合并同類項、同底數(shù)冪的除法以及冪的乘方進行計算即可.【詳解】A、(2a)3=8a3,故本選項錯誤;B、a3+a2不能合并,故本選項錯誤;C、a8÷a4=a4,故本選項錯誤;D、(a2)3=a6,故本選項正確;故選D.【點睛】本題考查了積的乘方、合并同類項、同底數(shù)冪的除法以及冪的乘方,掌握運算法則是解題的關鍵.8、D【解析】

利用所給的角的余弦值求解即可.【詳解】∵BC=5米,∠CBA=∠α,∴AB==.故選D.【點睛】本題主要考查學生對坡度、坡角的理解及運用.9、A【解析】試題分析:分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,經(jīng)檢驗x=3是分式方程的解.故選A.10、B【解析】試題解析:如圖所示:設BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據(jù)題意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=;故選B.【點睛】本題考查了解直角三角形、含30°角的直角三角形的性質、等腰三角形的性質、三角函數(shù)等,通過作輔助線求出AM是解決問題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、3cm.【解析】

根據(jù)矩形的對角線相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判斷出△AOB是等邊三角形,根據(jù)等邊三角形的性質求出AB即可.【詳解】解:∵四邊形ABCD是矩形,AC=6cm∴OA=OC=OB=OD=3cm,∵∠AOB=60°,∴△AOB是等邊三角形,∴AB=OA=3cm,故答案為:3cm【點睛】本題主要考查矩形的性質和等邊三角形的判定和性質,解本題的關鍵是掌握矩形的對角線相等且互相平分.12、1.【解析】試題分析:有意義,必須,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案為1.考點:二次根式有意義的條件.13、110°或50°.【解析】

由內(nèi)角和定理得出∠C=60°,根據(jù)翻折變換的性質知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°兩種情況,先求出∠DFC度數(shù),繼而由∠BDF=∠DFC﹣∠B可得答案.【詳解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性質知∠DFE=∠A=70°,分兩種情況討論:①當∠EFC=90°時,∠DFC=∠DFE+∠EFC=160°,則∠BDF=∠DFC﹣∠B=110°;②當∠FEC=90°時,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;綜上:∠BDF的度數(shù)為110°或50°.故答案為110°或50°.【點睛】本題考查的是圖形翻折變換的性質及三角形內(nèi)角和定理,熟知折疊的性質、三角形的內(nèi)角和定理、三角形外角性質是解答此題的關鍵.14、2或2.【解析】試題分析:分兩種情況討論:銳角三角形和鈍角三角形,根據(jù)勾股定理求得BD=16,CD=5,再由圖形求出BC,在銳角三角形中,BC=BD+CD=2,在鈍角三角形中,BC=CD-BD=2.故答案為2或2.考點:勾股定理15、【解析】

M、N兩點關于對角線AC對稱,所以CM=CN,進而求出CN的長度.再利用∠ADN=∠DNC即可求得tan∠ADN.【詳解】解:在正方形ABCD中,BC=CD=1.

∵DM=1,

∴CM=2,

∵M、N兩點關于對角線AC對稱,

∴CN=CM=2.

∵AD∥BC,

∴∠ADN=∠DNC,故答案為【點睛】本題綜合考查了正方形的性質,軸對稱的性質以及銳角三角函數(shù)的定義.16、4【解析】分析:首先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.詳解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值為4.故答案為4.點睛:本題考查了軸對稱-最短路線問題,三角形的面積,矩形的性質,勾股定理,兩點之間線段最短的性質.得出動點P所在的位置是解題的關鍵.三、解答題(共8題,共72分)17、見解析;.【解析】

(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果;(2)找出點(x,y)在函數(shù)y=x+1的圖象上的情況,利用概率公式即可求得答案.【詳解】畫樹狀圖得:共有12種等可能的結果、、、、、、、、、、、;在所有12種等可能結果中,在函數(shù)的圖象上的有、、這3種結果,點在函數(shù)的圖象上的概率為.【點睛】本題考查的是用列表法或樹狀圖法求概率,一次函數(shù)圖象上點的坐標特征.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.18、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).【解析】

(1)利用點在直線上,將點的坐標代入直線解析式中求解即可求出a,b,最后用待定系數(shù)法求出反比例函數(shù)解析式;(2)設出點P坐標,用三角形的面積公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3?n|,進而建立方程求解即可得出結論;(3)設出點M坐標,表示出MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=32,再三種情況建立方程求解即可得出結論.【詳解】(1)∵直線y=-x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵點A(-1,3)在反比例函數(shù)y=上,∴k=-1×3=-3,∴反比例函數(shù)解析式為y=;(2)設點P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=AC×|xP?xA|=×3×|n+1|,S△BDP=BD×|xB?xP|=×1×|3?n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3?n|,∴n=0或n=?3,∴P(0,2)或(?3,5);(3)設M(m,0)(m>0),∵A(?1,3),B(3,?1),∴MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=(3+1)2+(?1?3)2=32,∵△MAB是等腰三角形,∴①當MA=MB時,∴(m+1)2+9=(m?3)2+1,∴m=0,(舍)②當MA=AB時,∴(m+1)2+9=32,∴m=?1+或m=?1?(舍),∴M(?1+,0)③當MB=AB時,(m?3)2+1=32,∴m=3+或m=3?(舍),∴M(3+,0)即:滿足條件的M(?1+,0)或(3+,0).【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,三角形的面積的求法,等腰三角形的性質,用方程的思想解決問題是解本題的關鍵.19、解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣1.當x=﹣時,原式=(﹣)2﹣1=3﹣1=﹣2.【解析】應用整式的混合運算法則進行化簡,最后代入x值求值.20、DE的長度為6+1.【解析】

根據(jù)相似三角形的判定與性質解答即可.【詳解】解:過E作EF⊥BC,∵∠CDE=120°,∴∠EDF=60°,設EF為x,DF=x,∵∠B=∠EFC=90°,∵∠ACB=∠ECD,∴△ABC∽△EFC,∴,即,解得:x=9+2,∴DE==6+1,答:DE的長度為6+1.【點睛】本題考查相似三角形性質的應用,解題時關鍵是找出相似的三角形,然后根據(jù)對應邊成比例列出方程,建立適當?shù)臄?shù)學模型來解決問題.21、【小題1】見解析【小題2】見解析【小題3】【解析】證明:(1)連接OF∴FH切·O于點F∴OF⊥FH…………1分∵BC||FH∴OF⊥BC…………2分∴BF="CF"…………3分∴∠BAF=∠CAF即AF平分∠BAC…4分(2)∵∠CAF=∠CBF又∠CAF=∠BAF∴∠CBF=∠BAF…………6分∵BD平分∠ABC∴∠ABD=∠CBD∴∠BAF+∠ABD=∠CBF+∠CB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論