版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
景山學(xué)校2023-2024學(xué)年高考沖刺數(shù)學(xué)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則的大小關(guān)系是()A. B. C. D.2.已知為等腰直角三角形,,,為所在平面內(nèi)一點(diǎn),且,則()A. B. C. D.3.設(shè)命題p:>1,n2>2n,則p為()A. B.C. D.4.的展開(kāi)式中的系數(shù)為()A.5 B.10 C.20 D.305.已知定義在上函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),且,若,則()A.0 B.1 C.673 D.6746.將一張邊長(zhǎng)為的紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線(xiàn)折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.7.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.一輛郵車(chē)從地往地運(yùn)送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發(fā)時(shí),裝上發(fā)往后面地的郵件各1件,到達(dá)后面各地后卸下前面各地發(fā)往該地的郵件,同時(shí)裝上該地發(fā)往后面各地的郵件各1件,記該郵車(chē)到達(dá),,…各地裝卸完畢后剩余的郵件數(shù)記為.則的表達(dá)式為().A. B. C. D.9.在關(guān)于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn),漸近線(xiàn)方程為的雙曲線(xiàn)的標(biāo)準(zhǔn)方程為()A. B. C. D.11.已知函數(shù)且的圖象恒過(guò)定點(diǎn),則函數(shù)圖象以點(diǎn)為對(duì)稱(chēng)中心的充要條件是()A. B.C. D.12.已知,則的值等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線(xiàn)在點(diǎn)處的切線(xiàn)方程是_______.14.已知函數(shù),若,則實(shí)數(shù)的取值范圍為_(kāi)_________.15.的展開(kāi)式中的系數(shù)為_(kāi)_______________.16.記為數(shù)列的前項(xiàng)和.若,則______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的最大值為,且,求的最小值.18.(12分)如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn).(1)證明::(2)求直線(xiàn)與平面所成角的正弦值;(3)若為棱上一點(diǎn),滿(mǎn)足,求二面角的余弦值.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間.(2)設(shè)直線(xiàn)是曲線(xiàn)的切線(xiàn),若的斜率存在最小值-2,求的值,并求取得最小斜率時(shí)切線(xiàn)的方程.(3)已知分別在,處取得極值,求證:.20.(12分)在三棱錐中,是邊長(zhǎng)為的正三角形,平面平面,,M、N分別為、的中點(diǎn).?(1)證明:;(2)求三棱錐的體積.21.(12分)如圖,在中,已知,,,為線(xiàn)段的中點(diǎn),是由繞直線(xiàn)旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時(shí),求的值;(2)當(dāng)時(shí),求二面角的余弦值.22.(10分)在平面直角坐標(biāo)系中,已知橢圓:()的左、右焦點(diǎn)分別為、,且點(diǎn)、與橢圓的上頂點(diǎn)構(gòu)成邊長(zhǎng)為2的等邊三角形.(1)求橢圓的方程;(2)已知直線(xiàn)與橢圓相切于點(diǎn),且分別與直線(xiàn)和直線(xiàn)相交于點(diǎn)、.試判斷是否為定值,并說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對(duì)數(shù)運(yùn)算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線(xiàn)對(duì)稱(chēng),則,即,又,所以,.故選:B.【點(diǎn)睛】本題主要考查對(duì)數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.2、D【解析】
以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運(yùn)算,可求得點(diǎn)的坐標(biāo),進(jìn)而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點(diǎn)睛】本題考查平面向量基本定理的運(yùn)用、數(shù)量積的運(yùn)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.3、C【解析】根據(jù)命題的否定,可以寫(xiě)出:,所以選C.4、C【解析】
由知,展開(kāi)式中項(xiàng)有兩項(xiàng),一項(xiàng)是中的項(xiàng),另一項(xiàng)是與中含x的項(xiàng)乘積構(gòu)成.【詳解】由已知,,因?yàn)檎归_(kāi)式的通項(xiàng)為,所以展開(kāi)式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查求二項(xiàng)式定理展開(kāi)式中的特定項(xiàng),解決這類(lèi)問(wèn)題要注意通項(xiàng)公式應(yīng)寫(xiě)準(zhǔn)確,本題是一道基礎(chǔ)題.5、B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個(gè)周期內(nèi)的和是0,利用函數(shù)周期性對(duì)所求式子進(jìn)行化簡(jiǎn)可得.【詳解】因?yàn)闉槠婧瘮?shù),故;因?yàn)椋?,可知函?shù)的周期為3;在中,令,故,故函數(shù)在一個(gè)周期內(nèi)的函數(shù)值和為0,故.故選:B.【點(diǎn)睛】本題考查函數(shù)奇偶性與周期性綜合問(wèn)題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問(wèn)題多考查求值問(wèn)題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.6、B【解析】設(shè)折成的四棱錐的底面邊長(zhǎng)為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.7、D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因?yàn)閤,,當(dāng)時(shí),不妨取,,故時(shí),不成立,當(dāng)時(shí),不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點(diǎn)睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.8、D【解析】
根據(jù)題意,分析該郵車(chē)到第站時(shí),一共裝上的郵件和卸下的郵件數(shù)目,進(jìn)而計(jì)算可得答案.【詳解】解:根據(jù)題意,該郵車(chē)到第站時(shí),一共裝上了件郵件,需要卸下件郵件,則,故選:D.【點(diǎn)睛】本題主要考查數(shù)列遞推公式的應(yīng)用,屬于中檔題.9、C【解析】
討論當(dāng)時(shí),是否恒成立;討論當(dāng)恒成立時(shí),是否成立,即可選出正確答案.【詳解】解:當(dāng)時(shí),,由開(kāi)口向上,則恒成立;當(dāng)恒成立時(shí),若,則不恒成立,不符合題意,若時(shí),要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.【點(diǎn)睛】本題考查了命題的關(guān)系,考查了不等式恒成立問(wèn)題.對(duì)于探究?jī)蓚€(gè)命題的關(guān)系時(shí),一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.10、B【解析】
根據(jù)所求雙曲線(xiàn)的漸近線(xiàn)方程為,可設(shè)所求雙曲線(xiàn)的標(biāo)準(zhǔn)方程為k.再把點(diǎn)代入,求得k的值,可得要求的雙曲線(xiàn)的方程.【詳解】∵雙曲線(xiàn)的漸近線(xiàn)方程為設(shè)所求雙曲線(xiàn)的標(biāo)準(zhǔn)方程為k.又在雙曲線(xiàn)上,則k=16-2=14,即雙曲線(xiàn)的方程為∴雙曲線(xiàn)的標(biāo)準(zhǔn)方程為故選:B【點(diǎn)睛】本題主要考查用待定系數(shù)法求雙曲線(xiàn)的方程,雙曲線(xiàn)的定義和標(biāo)準(zhǔn)方程,以及雙曲線(xiàn)的簡(jiǎn)單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.11、A【解析】
由題可得出的坐標(biāo)為,再利用點(diǎn)對(duì)稱(chēng)的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點(diǎn)的坐標(biāo)為,又,所以.故選:A.【點(diǎn)睛】本題考查指數(shù)函數(shù)過(guò)定點(diǎn)問(wèn)題和函數(shù)對(duì)稱(chēng)性的應(yīng)用,屬于基礎(chǔ)題.12、A【解析】
由余弦公式的二倍角可得,,再由誘導(dǎo)公式有,所以【詳解】∵∴由余弦公式的二倍角展開(kāi)式有又∵∴故選:A【點(diǎn)睛】本題考查了學(xué)生對(duì)二倍角公式的應(yīng)用,要求學(xué)生熟練掌握三角函數(shù)中的誘導(dǎo)公式,屬于簡(jiǎn)單題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求導(dǎo),x=0代入求k,點(diǎn)斜式求切線(xiàn)方程即可【詳解】則又故切線(xiàn)方程為y=x+1故答案為y=x+1【點(diǎn)睛】本題考查切線(xiàn)方程,求導(dǎo)法則及運(yùn)算,考查直線(xiàn)方程,考查計(jì)算能力,是基礎(chǔ)題14、【解析】
畫(huà)圖分析可得函數(shù)是偶函數(shù),且在上單調(diào)遞減,利用偶函數(shù)性質(zhì)和單調(diào)性可解.【詳解】作出函數(shù)的圖如下所示,觀(guān)察可知,函數(shù)為偶函數(shù),且在上單調(diào)遞增,在上單調(diào)遞減,故,故實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】本題考查利用函數(shù)奇偶性及單調(diào)性解不等式.函數(shù)奇偶性的常用結(jié)論:(1)如果函數(shù)是偶函數(shù),那么.(2)奇函數(shù)在兩個(gè)對(duì)稱(chēng)的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個(gè)對(duì)稱(chēng)的區(qū)間上具有相反的單調(diào)性.15、【解析】
在二項(xiàng)展開(kāi)式的通項(xiàng)中令的指數(shù)為,求出參數(shù)值,然后代入通項(xiàng)可得出結(jié)果.【詳解】的展開(kāi)式的通項(xiàng)為,令,因此,的展開(kāi)式中的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式中指定項(xiàng)系數(shù)的求解,涉及二項(xiàng)展開(kāi)式通項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.16、1【解析】
由已知數(shù)列遞推式可得數(shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,再由等比數(shù)列的前項(xiàng)和公式求解.【詳解】由,得,.且,則,即.?dāng)?shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,則.故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項(xiàng)和,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】
(1)化簡(jiǎn)得到,分類(lèi)解不等式得到答案.(2)的最大值,,利用均值不等式計(jì)算得到答案.【詳解】(1)因?yàn)?,故或或解得或,故不等式的解集?(2)畫(huà)出函數(shù)圖像,根據(jù)圖像可知的最大值.因?yàn)?,所以,?dāng)且僅當(dāng)時(shí),等號(hào)成立,故的最小值是3.【點(diǎn)睛】本題考查了解不等式,均值不等式求最值,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.18、(1)證明見(jiàn)解析(2)(3)【解析】
(1)根據(jù)題意以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,寫(xiě)出各個(gè)點(diǎn)的坐標(biāo),并表示出,由空間向量數(shù)量積運(yùn)算即可證明.(2)先求得平面的法向量,即可求得直線(xiàn)與平面法向量夾角的余弦值,即為直線(xiàn)與平面所成角的正弦值;(3)由點(diǎn)在棱上,設(shè),再由,結(jié)合,由空間向量垂直的坐標(biāo)關(guān)系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數(shù)量積的運(yùn)算求得兩個(gè)平面夾角的余弦值,再根據(jù)二面角的平面角為銳角即可確定二面角的余弦值.【詳解】(1)證明:∵底面,,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,∵,,點(diǎn)為棱的中點(diǎn).∴,,,,,,.(2),設(shè)平面的法向量為.則,代入可得,令解得,即,設(shè)直線(xiàn)與平面所成角為,由直線(xiàn)與平面夾角可知所以直線(xiàn)與平面所成角的正弦值為.(3),由點(diǎn)在棱上,設(shè),故,由,得,解得,即,設(shè)平面的法向量為,由,得,令,則取平面的法向量,則二面角的平面角滿(mǎn)足,由圖可知,二面角為銳二面角,故二面角的余弦值為.【點(diǎn)睛】本題考查了空間向量的綜合應(yīng)用,由空間向量證明線(xiàn)線(xiàn)垂直,求直線(xiàn)與平面夾角及平面與平面形成的二面角大小,計(jì)算量較大,屬于中檔題.19、(1)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(2),;(3)證明見(jiàn)解析.【解析】
(1)由的正負(fù)可確定的單調(diào)區(qū)間;(2)利用基本不等式可求得時(shí),取得最小值,由導(dǎo)數(shù)的幾何意義可知,從而求得,求得切點(diǎn)坐標(biāo)后,可得到切線(xiàn)方程;(3)由極值點(diǎn)的定義可知是的兩個(gè)不等正根,由判別式大于零得到的取值范圍,同時(shí)得到韋達(dá)定理的形式;化簡(jiǎn)為,結(jié)合的范圍可證得結(jié)論.【詳解】(1)由題意得:的定義域?yàn)?,?dāng)時(shí),,,當(dāng)和時(shí),;當(dāng)時(shí),,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.(2),所以(當(dāng)且僅當(dāng),即時(shí)取等號(hào)),切線(xiàn)的斜率存在最小值,,解得:,,即切點(diǎn)為,從而切線(xiàn)方程,即:.(3),分別在,處取得極值,,是方程,即的兩個(gè)不等正根.則,解得:,且,.,,,即不等式成立.【點(diǎn)睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間、導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)證明不等式等知識(shí);本題中證明不等式的關(guān)鍵是能夠通過(guò)極值點(diǎn)的定義將問(wèn)題轉(zhuǎn)變?yōu)橐辉畏匠谈姆植紗?wèn)題.20、(1)證明見(jiàn)解析;(2).【解析】
(1)取中點(diǎn),連接,,證明平面,由線(xiàn)面垂直的性質(zhì)可得;(2)由,即可求得三棱錐的體積.【詳解】解:(1)證明:取中點(diǎn)D,連接,.因?yàn)?,,所以且,因?yàn)椋矫?,平面,所以平?又平面,所以;(2)解:因?yàn)槠矫?,平面,所以平面平面,過(guò)N作于E,則平面,因?yàn)槠矫嫫矫?,,平面平面,平面,所以平面,又因?yàn)槠矫?,所以,由于,所以所以,所?【點(diǎn)睛】本題考查線(xiàn)面垂直,考查三棱錐體積的計(jì)算,解題的關(guān)鍵是掌握線(xiàn)面垂直的判定與性質(zhì),屬于中檔題.21、(1);(2).【解析】
(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個(gè)平面的法向量的夾角.【詳解】(1)如圖,以為原點(diǎn),在平面內(nèi)垂直于的直線(xiàn)為軸所在的直線(xiàn)分別為軸,軸,建立空間直角坐標(biāo)系,則,設(shè)為平面的一個(gè)法向量,由得,取,則因?yàn)槠矫娴囊粋€(gè)法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當(dāng)平面的一個(gè)法向量為,綜上,二面角的余弦值為.【點(diǎn)睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.22、(1)(2)為定值.【解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年頒獎(jiǎng)典禮致敬奉獻(xiàn)感恩同行
- 2026年回歸城市特色的房地產(chǎn)開(kāi)發(fā)策略
- 禁毒預(yù)防知識(shí)課件
- 病毒性肺炎培訓(xùn)課件
- 云南省部分學(xué)校2025-2026學(xué)年七年級(jí)上學(xué)期第二次月考?xì)v史試題(含答案)
- 四川省瀘州市瀘縣2025-2026學(xué)年七年級(jí)上學(xué)期1月期末數(shù)學(xué)試題(含答案)
- 阿拉善生態(tài)基金會(huì)2024年年度報(bào)告
- 2024屆河南省濮陽(yáng)市范縣高三上學(xué)期模擬測(cè)試(一)歷史試題(含答案)
- 2022-2023學(xué)年廣東深圳實(shí)驗(yàn)學(xué)校初中部初三上學(xué)期第一次月考數(shù)學(xué)試題及答案
- 2026北京市海淀工讀學(xué)校招聘?jìng)淇碱}庫(kù)及答案詳解1套
- 廣東省廣州市2025年上學(xué)期八年級(jí)數(shù)學(xué)期末考試試卷附答案
- 疑難病例討論制度落實(shí)常見(jiàn)問(wèn)題與改進(jìn)建議
- 手機(jī)鋪貨協(xié)議書(shū)
- 2025年新能源停車(chē)場(chǎng)建設(shè)項(xiàng)目可行性研究報(bào)告
- 2025年物業(yè)管理中心工作總結(jié)及2026年工作計(jì)劃
- 創(chuàng)傷性脾破裂的護(hù)理
- 蓬深102井鉆井工程(重新報(bào)批)項(xiàng)目環(huán)境影響報(bào)告表
- 馬路切割承包協(xié)議書(shū)
- 大模型金融領(lǐng)域可信應(yīng)用參考框架
- (新教材)2025年人教版七年級(jí)上冊(cè)歷史期末復(fù)習(xí)??贾R(shí)點(diǎn)梳理復(fù)習(xí)提綱(教師版)
- 學(xué)??剌z保學(xué)工作流程及四書(shū)一表一單
評(píng)論
0/150
提交評(píng)論