安徽省合肥市眾興中學2024屆高三下學期一??荚嚁祵W試題含解析_第1頁
安徽省合肥市眾興中學2024屆高三下學期一模考試數學試題含解析_第2頁
安徽省合肥市眾興中學2024屆高三下學期一??荚嚁祵W試題含解析_第3頁
安徽省合肥市眾興中學2024屆高三下學期一模考試數學試題含解析_第4頁
安徽省合肥市眾興中學2024屆高三下學期一??荚嚁祵W試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省合肥市眾興中學2024屆高三下學期一??荚嚁祵W試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知全集,集合,則=()A. B.C. D.2.某網店2019年全年的月收支數據如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的極差為60 B.7月份的利潤最大C.這12個月利潤的中位數與眾數均為30 D.這一年的總利潤超過400萬元3.已知函數(),若函數在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或04.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標為1,則p=()A.1 B. C.2 D.45.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.6.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個半圓構成,則該幾何體的體積為()A. B. C. D.7.已知函數,,若對任意,總存在,使得成立,則實數的取值范圍為()A. B.C. D.8.已知數列中,,(),則等于()A. B. C. D.29.若平面向量,滿足,則的最大值為()A. B. C. D.10.的內角的對邊分別為,若,則內角()A. B. C. D.11.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.12.若函數f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實數a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)二、填空題:本題共4小題,每小題5分,共20分。13.在中,,是的角平分線,設,則實數的取值范圍是__________.14.已知,若,則________.15.正四面體的各個點在平面同側,各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.16.如圖是一個算法的偽代碼,運行后輸出的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,為實數,且.(Ⅰ)當時,求的單調區(qū)間和極值;(Ⅱ)求函數在區(qū)間,上的值域(其中為自然對數的底數).18.(12分)設直線與拋物線交于兩點,與橢圓交于兩點,設直線(為坐標原點)的斜率分別為,若.(1)證明:直線過定點,并求出該定點的坐標;(2)是否存在常數,滿足?并說明理由.19.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.20.(12分)某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數與燒開一壺水所用時間的一組數據,且作了一定的數據處理(如下表),得到了散點圖(如下圖).表中,.(1)根據散點圖判斷,與哪一個更適宜作燒水時間關于開關旋鈕旋轉的弧度數的回歸方程類型?(不必說明理由)(2)根據判斷結果和表中數據,建立關于的回歸方程;(3)若單位時間內煤氣輸出量與旋轉的弧度數成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?附:對于一組數據,其回歸直線的斜率和截距的最小二乘法估計值分別為,21.(12分)在平面直角坐標系中,直線的參數方程為(為參數).在以原點為極點,軸正半軸為極軸的極坐標系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標方程;(2)若點坐標為,圓與直線交于兩點,求的值.22.(10分)已知函數(1)若函數有且只有一個零點,求實數的取值范圍;(2)若函數對恒成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先計算集合,再計算,最后計算.【詳解】解:,,.故選:.【點睛】本題主要考查了集合的交,補混合運算,注意分清集合間的關系,屬于基礎題.2、D【解析】

直接根據折線圖依次判斷每個選項得到答案.【詳解】由圖可知月收入的極差為,故選項A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項B正確;易求得總利潤為380萬元,眾數為30,中位數為30,故選項C正確,選項D錯誤.故選:.【點睛】本題考查了折線圖,意在考查學生的理解能力和應用能力.3、C【解析】

求出函數的導函數,當時,只需,即,令,利用導數求其單調區(qū)間,即可求出參數的值,當時,根據函數的單調性及零點存在性定理可判斷;【詳解】解:∵(),∴,∴當時,由得,則在上單調遞減,在上單調遞增,所以是極小值,∴只需,即.令,則,∴函數在上單調遞增.∵,∴;當時,,函數在上單調遞減,∵,,函數在上有且只有一個零點,∴的值是1或0.故選:C【點睛】本題考查利用導數研究函數的零點問題,零點存在性定理的應用,屬于中檔題.4、C【解析】

設直線l的方程為x=y(tǒng),與拋物線聯立利用韋達定理可得p.【詳解】由已知得F(,0),設直線l的方程為x=y(tǒng),并與y2=2px聯立得y2﹣py﹣p2=0,設A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標為1,則y0(y1+y2)=,所以p=2,故選C.【點睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達定理是解題的關鍵,屬中檔題.5、C【解析】

將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內容,考查了學生的空間想象能力,屬于中檔題.6、A【解析】由題意得到該幾何體是一個組合體,前半部分是一個高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個底面半徑為2的半個圓錐,體積為故答案為A.點睛:思考三視圖還原空間幾何體首先應深刻理解三視圖之間的關系,遵循“長對正,高平齊,寬相等”的基本原則,其內涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據三視圖進行調整.7、C【解析】

將函數解析式化簡,并求得,根據當時可得的值域;由函數在上單調遞減可得的值域,結合存在性成立問題滿足的集合關系,即可求得的取值范圍.【詳解】依題意,則,當時,,故函數在上單調遞增,當時,;而函數在上單調遞減,故,則只需,故,解得,故實數的取值范圍為.故選:C.【點睛】本題考查了導數在判斷函數單調性中的應用,恒成立與存在性成立問題的綜合應用,屬于中檔題.8、A【解析】

分別代值計算可得,觀察可得數列是以3為周期的周期數列,問題得以解決.【詳解】解:∵,(),

,

,

,

…,

∴數列是以3為周期的周期數列,

,

故選:A.【點睛】本題考查數列的周期性和運用:求數列中的項,考查運算能力,屬于基礎題.9、C【解析】

可根據題意把要求的向量重新組合成已知向量的表達,利用向量數量積的性質,化簡為三角函數最值.【詳解】由題意可得:,,,故選:C【點睛】本題主要考查根據已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關鍵點.本題屬中檔題.10、C【解析】

由正弦定理化邊為角,由三角函數恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點睛】本題考查正弦定理,考查兩角和的正弦公式和誘導公式,掌握正弦定理的邊角互化是解題關鍵.11、D【解析】

根據為等腰三角形,可求出點P的坐標,又由的斜率為可得出關系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于中檔題.12、C【解析】

求函數導數,分析函數單調性得到函數的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數,在(-2,0)上是減函數,作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結合圖象可知,解得a∈[-3,0),故選C.【點睛】本題主要考查了利用函數導數研究函數的單調性,進而研究函數的最值,屬于??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設,,,由,用面積公式表示面積可得到,利用,即得解.【詳解】設,,,由得:,化簡得,由于,故.故答案為:【點睛】本題考查了解三角形綜合,考查了學生轉化劃歸,綜合分析,數學運算能力,屬于中檔題.14、1【解析】

由題意先求得的值,可得,再令,可得結論.【詳解】已知,,,,令,可得,故答案為:1.【點睛】本題主要考查二項式定理的應用,注意根據題意,分析所給代數式的特點,通過給二項式的賦值,求展開式的系數和,可以簡便的求出答案,屬于基礎題.15、【解析】

不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F,根據題意F為中點,E為AB的三等分點(靠近點A),設棱長為a,求得,再用余弦定理求得:,從而求得,再根據頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F,如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應用,還考查了轉化化歸的思想和空間想象,運算求解的能力,屬于難題,16、13【解析】根據題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿足條件,故得到此時輸出的b值為13.故答案為13.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)極大值0,沒有極小值;函數的遞增區(qū)間,遞減區(qū)間,(Ⅱ)見解析【解析】

(Ⅰ)由,令,得增區(qū)間為,令,得減區(qū)間為,所以有極大值,無極小值;(Ⅱ)由,分,和三種情況,考慮函數在區(qū)間上的值域,即可得到本題答案.【詳解】當時,,,當時,,函數單調遞增,當時,,函數單調遞減,故當時,函數取得極大值,沒有極小值;函數的增區(qū)間為,減區(qū)間為,,當時,,在上單調遞增,即函數的值域為;當時,,在上單調遞減,即函數的值域為;當時,易得時,,在上單調遞增,時,,在上單調遞減,故當時,函數取得最大值,最小值為,中最小的,當時,,最小值;當,,最小值;綜上,當時,函數的值域為,當時,函數的值域,當時,函數的值域為,當時,函數的值域為.【點睛】本題主要考查利用導數求單調區(qū)間和極值,以及利用導數研究含參函數在給定區(qū)間的值域,考查學生的運算求解能力,體現了分類討論的數學思想.18、(1)證明見解析(0,2);(2)存在,理由見解析【解析】

(1)設直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(2)由斜率公式分別求出,,聯立直線與拋物線,橢圓,再由根與系數的關系得,,,代入,,化簡即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過原點,故設由可得,.,,故所以直線l的方程為故直線l恒過定點.(2)由(1)知設由可得,,即存在常數滿足題意.【點睛】本題主要考查了直線與拋物線、橢圓的位置關系,直線過定點問題,考查學生分析解決問題的能力,屬于中檔題.19、(1)證明見解析(2)【解析】

(1)取中點,連結,證明平面得到答案.(2)如圖所示,建立空間直角坐標系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)取中點,連結,,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標系,則,可取為平面的一個法向量.設平面的一個法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【點睛】本題考查了面面垂直,二面角,意在考查學生的計算能力和空間想象能力.20、(1)選取更合適;(2);(3)時,煤氣用量最小.【解析】

(1)根據散點圖的特點,可得更適合;(2)先建立關于的回歸方程,再得出關于的回歸方程;(3)寫出函數關系,利用基本不等式得出最小值及其成立的條件.【詳解】(1)選取更適宜作燒水時間關于開關旋鈕旋轉的弧度數的回歸方程類型;(2)由公式可得:,,所以所求回歸直線方程為:;(3)根據題意,設,則煤氣用量,當且僅當時,等號成立,即時,煤氣用量最小.【點睛】此題考查根據題意求回歸方程,利用線性回歸方程的求法得解,結合基本不等式求最值.21、(1)(2)【解析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論