2024屆重慶市外國語校中考聯(lián)考數(shù)學(xué)試題含解析_第1頁
2024屆重慶市外國語校中考聯(lián)考數(shù)學(xué)試題含解析_第2頁
2024屆重慶市外國語校中考聯(lián)考數(shù)學(xué)試題含解析_第3頁
2024屆重慶市外國語校中考聯(lián)考數(shù)學(xué)試題含解析_第4頁
2024屆重慶市外國語校中考聯(lián)考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆重慶市外國語校中考聯(lián)考數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點(diǎn),點(diǎn)C在第一象限,AC⊥AB,且AC=AB,則點(diǎn)C的坐標(biāo)為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)2.如圖,將周長為8的△ABC沿BC方向平移1個(gè)單位長度得到,則四邊形的周長為()A.8 B.10 C.12 D.163.已知關(guān)于x的一元二次方程有兩個(gè)相等的實(shí)根,則k的值為()A. B. C.2或3 D.或4.一次函數(shù)的圖象上有點(diǎn)和點(diǎn),且,下列敘述正確的是A.若該函數(shù)圖象交y軸于正半軸,則B.該函數(shù)圖象必經(jīng)過點(diǎn)C.無論m為何值,該函數(shù)圖象一定過第四象限D(zhuǎn).該函數(shù)圖象向上平移一個(gè)單位后,會(huì)與x軸正半軸有交點(diǎn)5.在下列四個(gè)汽車標(biāo)志圖案中,能用平移變換來分析其形成過程的圖案是()A. B. C. D.6.的算術(shù)平方根為()A. B. C. D.7.小明和小張兩人練習(xí)電腦打字,小明每分鐘比小張少打6個(gè)字,小明打120個(gè)字所用的時(shí)間和小張打180個(gè)字所用的時(shí)間相等.設(shè)小明打字速度為x個(gè)/分鐘,則列方程正確的是()A. B. C. D.8.如圖,熱氣球的探測器顯示,從熱氣球A看一棟樓頂部B的仰角為30°,看這棟樓底部C的俯角為60°,熱氣球A與樓的水平距離為120米,這棟樓的高度BC為()A.160米 B.(60+160) C.160米 D.360米9.如圖,從正方形紙片的頂點(diǎn)沿虛線剪開,則∠1的度數(shù)可能是()A.44 B.45 C.46 D.4710.下列命題中錯(cuò)誤的有()個(gè)(1)等腰三角形的兩個(gè)底角相等(2)對角線相等且互相垂直的四邊形是正方形(3)對角線相等的四邊形為矩形(4)圓的切線垂直于半徑(5)平分弦的直徑垂直于弦A.1B.2C.3D.4二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.將拋物線y=(x+m)2向右平移2個(gè)單位后,對稱軸是y軸,那么m的值是_____.12.對角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形13.在矩形ABCD中,對角線AC、BD相交于點(diǎn)O,∠AOB=60°,AC=6cm,則AB的長是_____.14.如圖所示,一個(gè)寬為2cm的刻度尺在圓形光盤上移動(dòng),當(dāng)刻度尺的一邊與光盤相切時(shí),另一邊與光盤邊緣兩個(gè)交點(diǎn)處的讀數(shù)恰好是“2”和“10”(單位:cm),那么該光盤的半徑是____cm.15.定義:在平面直角坐標(biāo)系xOy中,把從點(diǎn)P出發(fā)沿縱或橫方向到達(dá)點(diǎn)至多拐一次彎的路徑長稱為P,Q的“實(shí)際距離”如圖,若,,則P,Q的“實(shí)際距離”為5,即或環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具設(shè)A,B兩個(gè)小區(qū)的坐標(biāo)分別為,,若點(diǎn)表示單車停放點(diǎn),且滿足M到A,B的“實(shí)際距離”相等,則______.16.如圖,路燈距離地面6,身高1.5的小明站在距離燈的底部(點(diǎn))15的處,則小明的影子的長為________.三、解答題(共8題,共72分)17.(8分)如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.①求拋物線的函數(shù)關(guān)系式;②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);③點(diǎn)Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).18.(8分)直角三角形ABC中,,D是斜邊BC上一點(diǎn),且,過點(diǎn)C作,交AD的延長線于點(diǎn)E,交AB延長線于點(diǎn)F.求證:;若,,過點(diǎn)B作于點(diǎn)G,連接依題意補(bǔ)全圖形,并求四邊形ABGD的面積.19.(8分)已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線,AG∥DB交CB的延長線于G.求證:△ADE≌△CBF;若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.20.(8分)如圖1,在菱形ABCD中,AB=,tan∠ABC=2,點(diǎn)E從點(diǎn)D出發(fā),以每秒1個(gè)單位長度的速度沿著射線DA的方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒),將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角α(α=∠BCD),得到對應(yīng)線段CF.(1)求證:BE=DF;(2)當(dāng)t=秒時(shí),DF的長度有最小值,最小值等于;(3)如圖2,連接BD、EF、BD交EC、EF于點(diǎn)P、Q,當(dāng)t為何值時(shí),△EPQ是直角三角形?21.(8分)如圖1,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0).繞點(diǎn)A旋轉(zhuǎn)的直線l:y=kx+b1交拋物線于另一點(diǎn)D,交y軸于點(diǎn)C.(1)求拋物線的函數(shù)表達(dá)式;(2)當(dāng)點(diǎn)D在第二象限且滿足CD=5AC時(shí),求直線l的解析式;(3)在(2)的條件下,點(diǎn)E為直線l下方拋物線上的一點(diǎn),直接寫出△ACE面積的最大值;(4)如圖2,在拋物線的對稱軸上有一點(diǎn)P,其縱坐標(biāo)為4,點(diǎn)Q在拋物線上,當(dāng)直線l與y軸的交點(diǎn)C位于y軸負(fù)半軸時(shí),是否存在以點(diǎn)A,D,P,Q為頂點(diǎn)的平行四邊形?若存在,請直接寫出點(diǎn)D的橫坐標(biāo);若不存在,請說明理由.22.(10分)在陽光體育活動(dòng)時(shí)間,小亮、小瑩、小芳和大剛到學(xué)校乒乓球室打乒乓球,當(dāng)時(shí)只有一副空球桌,他們只能選兩人打第一場.(1)如果確定小亮打第一場,再從其余三人中隨機(jī)選取一人打第一場,求恰好選中大剛的概率;(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場.游戲規(guī)則是:三人同時(shí)伸“手心、手背”中的一種手勢,如果恰好有兩人伸出的手勢相同,那么這兩人上場,否則重新開始,這三人伸出“手心”或“手背”都是隨機(jī)的,請用畫樹狀圖的方法求小瑩和小芳打第一場的概率.23.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(3,0),點(diǎn)B(0,3),點(diǎn)O為原點(diǎn).動(dòng)點(diǎn)C、D分別在直線AB、OB上,將△BCD沿著CD折疊,得△B'CD.(Ⅰ)如圖1,若CD⊥AB,點(diǎn)B'恰好落在點(diǎn)A處,求此時(shí)點(diǎn)D的坐標(biāo);(Ⅱ)如圖2,若BD=AC,點(diǎn)B'恰好落在y軸上,求此時(shí)點(diǎn)C的坐標(biāo);(Ⅲ)若點(diǎn)C的橫坐標(biāo)為2,點(diǎn)B'落在x軸上,求點(diǎn)B'的坐標(biāo)(直接寫出結(jié)果即可).24.如圖,△ABC是等腰三角形,AB=AC,點(diǎn)D是AB上一點(diǎn),過點(diǎn)D作DE⊥BC交BC于點(diǎn)E,交CA延長線于點(diǎn)F.證明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的長,

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

過點(diǎn)C作CD⊥x軸與D,如圖,先利用一次函數(shù)圖像上點(diǎn)的坐標(biāo)特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點(diǎn)坐標(biāo)可求.【詳解】如圖,過點(diǎn)C作CD⊥x軸與D.∵函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點(diǎn),∴當(dāng)x=0時(shí),y=2,則B(0,2);當(dāng)y=0時(shí),x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【點(diǎn)睛】本題主要考查一次函數(shù)的基本概念。角角邊定理、全等三角形的性質(zhì)以及一次函數(shù)的應(yīng)用,熟練掌握相關(guān)知識點(diǎn)是解答的關(guān)鍵.2、B【解析】根據(jù)平移的基本性質(zhì),得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根據(jù)題意,將周長為8個(gè)單位的△ABC沿邊BC向右平移1個(gè)單位得到△DEF,

∴AD=1,BF=BC+CF=BC+1,DF=AC;

又∵AB+BC+AC=8,

∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.

故選C.“點(diǎn)睛”本題考查平移的基本性質(zhì):①平移不改變圖形的形狀和大??;②經(jīng)過平移,對應(yīng)點(diǎn)所連的線段平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等.得到CF=AD,DF=AC是解題的關(guān)鍵.3、A【解析】

根據(jù)方程有兩個(gè)相等的實(shí)數(shù)根結(jié)合根的判別式即可得出關(guān)于k的方程,解之即可得出結(jié)論.【詳解】∵方程有兩個(gè)相等的實(shí)根,∴△=k2-4×2×3=k2-24=0,解得:k=.故選A.【點(diǎn)睛】本題考查了根的判別式,熟練掌握“當(dāng)△=0時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根”是解題的關(guān)鍵.4、B【解析】

利用一次函數(shù)的性質(zhì)逐一進(jìn)行判斷后即可得到正確的結(jié)論.【詳解】解:一次函數(shù)的圖象與y軸的交點(diǎn)在y軸的正半軸上,則,,若,則,故A錯(cuò)誤;

把代入得,,則該函數(shù)圖象必經(jīng)過點(diǎn),故B正確;

當(dāng)時(shí),,,函數(shù)圖象過一二三象限,不過第四象限,故C錯(cuò)誤;

函數(shù)圖象向上平移一個(gè)單位后,函數(shù)變?yōu)?,所以?dāng)時(shí),,故函數(shù)圖象向上平移一個(gè)單位后,會(huì)與x軸負(fù)半軸有交點(diǎn),故D錯(cuò)誤,

故選B.【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、一次函數(shù)圖象與幾何變換,解題的關(guān)鍵是熟練掌握一次函數(shù)的性質(zhì),靈活應(yīng)用這些知識解決問題,屬于中考常考題型.5、D【解析】

根據(jù)平移不改變圖形的形狀和大小,將題中所示的圖案通過平移后可以得到的圖案是D.【詳解】解:觀察圖形可知圖案D通過平移后可以得到.

故選D.【點(diǎn)睛】本題考查圖形的平移,圖形的平移只改變圖形的位置,而不改變圖形的形狀和大小,學(xué)生易混淆圖形的平移與旋轉(zhuǎn)或翻轉(zhuǎn).6、B【解析】分析:先求得的值,再繼續(xù)求所求數(shù)的算術(shù)平方根即可.詳解:∵=2,而2的算術(shù)平方根是,∴的算術(shù)平方根是,故選B.點(diǎn)睛:此題主要考查了算術(shù)平方根的定義,解題時(shí)應(yīng)先明確是求哪個(gè)數(shù)的算術(shù)平方根,否則容易出現(xiàn)選A的錯(cuò)誤.7、C【解析】

解:因?yàn)樵O(shè)小明打字速度為x個(gè)/分鐘,所以小張打字速度為(x+6)個(gè)/分鐘,根據(jù)關(guān)系:小明打120個(gè)字所用的時(shí)間和小張打180個(gè)字所用的時(shí)間相等,可列方程得,故選C.【點(diǎn)睛】本題考查列分式方程解應(yīng)用題,找準(zhǔn)題目中的等量關(guān)系,難度不大.8、C【解析】

過點(diǎn)A作AD⊥BC于點(diǎn)D.根據(jù)三角函數(shù)關(guān)系求出BD、CD的長,進(jìn)而可求出BC的長.【詳解】如圖所示,過點(diǎn)A作AD⊥BC于點(diǎn)D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD?tan30°=120×=m;在Rt△ADC中,∠DAC=60°,CD=AD?tan60°=120×=m.∴BC=BD+DC=m.故選C.【點(diǎn)睛】本題主要考查三角函數(shù),解答本題的關(guān)鍵是熟練掌握三角函數(shù)的有關(guān)知識,并牢記特殊角的三角函數(shù)值.9、A【解析】

連接正方形的對角線,然后依據(jù)正方形的性質(zhì)進(jìn)行判斷即可.【詳解】解:如圖所示:∵四邊形為正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故選:A.【點(diǎn)睛】本題主要考查的是正方形的性質(zhì),熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.10、D【解析】分析:根據(jù)等腰三角形的性質(zhì)、正方形的判定定理、矩形的判定定理、切線的性質(zhì)、垂徑定理判斷即可.詳解:等腰三角形的兩個(gè)底角相等,(1)正確;對角線相等、互相平分且互相垂直的四邊形是正方形,(2)錯(cuò)誤;對角線相等的平行四邊形為矩形,(3)錯(cuò)誤;圓的切線垂直于過切點(diǎn)的半徑,(4)錯(cuò)誤;平分弦(不是直徑)的直徑垂直于弦,(5)錯(cuò)誤.故選D.點(diǎn)睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯(cuò)誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】

根據(jù)平移規(guī)律“左加右減,上加下減”填空.【詳解】解:將拋物線y=(x+m)1向右平移1個(gè)單位后,得到拋物線解析式為y=(x+m-1)1.其對稱軸為:x=1-m=0,解得m=1.故答案是:1.【點(diǎn)睛】主要考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.12、B【解析】

根據(jù)平行四邊形的判定與矩形的判定定理,即可求得答案.【詳解】∵對角線互相平分的四邊形是平行四邊形,對角線相等的平行四邊形是矩形,∴對角線相等且互相平分的四邊形一定是矩形.故選B.【點(diǎn)睛】此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡單,解題的關(guān)鍵是熟記定理.13、3cm.【解析】

根據(jù)矩形的對角線相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判斷出△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)求出AB即可.【詳解】解:∵四邊形ABCD是矩形,AC=6cm∴OA=OC=OB=OD=3cm,∵∠AOB=60°,∴△AOB是等邊三角形,∴AB=OA=3cm,故答案為:3cm【點(diǎn)睛】本題主要考查矩形的性質(zhì)和等邊三角形的判定和性質(zhì),解本題的關(guān)鍵是掌握矩形的對角線相等且互相平分.14、5【解析】

本題先根據(jù)垂徑定理構(gòu)造出直角三角形,然后在直角三角形中已知弦長和弓形高,根據(jù)勾股定理求出半徑,從而得解.【詳解】解:如圖,設(shè)圓心為O,弦為AB,切點(diǎn)為C.如圖所示.則AB=8cm,CD=2cm.

連接OC,交AB于D點(diǎn).連接OA.

∵尺的對邊平行,光盤與外邊緣相切,

∴OC⊥AB.

∴AD=4cm.

設(shè)半徑為Rcm,則R2=42+(R-2)2,

解得R=5,

∴該光盤的半徑是5cm.

故答案為5【點(diǎn)睛】此題考查了切線的性質(zhì)及垂徑定理,建立數(shù)學(xué)模型是關(guān)鍵.15、1.【解析】

根據(jù)兩點(diǎn)間的距離公式可求m的值.【詳解】依題意有,解得,故答案為:1.【點(diǎn)睛】考查了坐標(biāo)確定位置,正確理解實(shí)際距離的定義是解題關(guān)鍵.16、1.【解析】

易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影長.【詳解】解:根據(jù)題意,易得△MBA∽△MCO,

根據(jù)相似三角形的性質(zhì)可知,即,

解得AM=1m.則小明的影長為1米.

故答案是:1.【點(diǎn)睛】本題只要是把實(shí)際問題抽象到相似三角形中,利用相似三角形的相似比可得出小明的影長.三、解答題(共8題,共72分)17、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點(diǎn)Q的坐標(biāo)為(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)將二次函數(shù)的解析式進(jìn)行配方即可得到頂點(diǎn)D的坐標(biāo).(2)①以AD為直徑的圓經(jīng)過點(diǎn)C,即點(diǎn)C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個(gè)直角三角形,且∠ACD=90°,A點(diǎn)坐標(biāo)可得,而C、D的坐標(biāo)可由a表達(dá)出來,在得出AC、CD、AD的長度表達(dá)式后,依據(jù)勾股定理列等式即可求出a的值.②將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標(biāo)關(guān)鍵是求出點(diǎn)M的坐標(biāo);首先根據(jù)①的函數(shù)解析式設(shè)出M點(diǎn)的坐標(biāo),然后根據(jù)題干條件:BF=2MF作為等量關(guān)系進(jìn)行解答即可.③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,由C、D兩點(diǎn)的坐標(biāo)不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG2=2QB2,設(shè)出點(diǎn)Q的坐標(biāo),然后用Q點(diǎn)縱坐標(biāo)表達(dá)出QD、QB的長,根據(jù)上面的等式列方程即可求出點(diǎn)Q的坐標(biāo).詳解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD為直徑的圓經(jīng)過點(diǎn)C,∴△ACD為直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化簡,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).∵將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,∴PM∥x軸,且PM=OB=1;設(shè)M(x,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=.∴M(,)、N(,).③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,過C作CH⊥QD于H,如下圖:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;設(shè)Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化簡,得:b2+8b﹣8=0,解得:b=﹣4±2;即點(diǎn)Q的坐標(biāo)為(1,)或(1,).點(diǎn)睛:此題主要考查了二次函數(shù)解析式的確定、旋轉(zhuǎn)圖形的性質(zhì)、圓周角定理以及直線和圓的位置關(guān)系等重要知識點(diǎn);后兩個(gè)小題較難,最后一題中,通過構(gòu)建等腰直角三角形找出QD和⊙Q半徑間的數(shù)量關(guān)系是解題題目的關(guān)鍵.18、(1)證明見解析;(2)補(bǔ)圖見解析;.【解析】

根據(jù)等腰三角形的性質(zhì)得到,等量代換得到,根據(jù)余角的性質(zhì)即可得到結(jié)論;根據(jù)平行線的判定定理得到AD∥BG,推出四邊形ABGD是平行四邊形,得到平行四邊形ABGD是菱形,設(shè)AB=BG=GD=AD=x,解直角三角形得到,過點(diǎn)B作于H,根據(jù)平行四邊形的面積公式即可得到結(jié)論.【詳解】解:,,,,,,,,;補(bǔ)全圖形,如圖所示:,,,,,,,,,且,,,,四邊形ABGD是平行四邊形,,平行四邊形ABGD是菱形,設(shè),,,,過點(diǎn)B作于H,..故答案為(1)證明見解析;(2)補(bǔ)圖見解析;.【點(diǎn)睛】本題考查等腰三角形的性質(zhì),平行四邊形的判定和性質(zhì),菱形的判定和性質(zhì),解題的關(guān)鍵是正確的作出輔助線.19、(1)證明見解析(2)當(dāng)四邊形BEDF是菱形時(shí),四邊形AGBD是矩形;證明見解析;【解析】

(1)在證明全等時(shí)常根據(jù)已知條件,分析還缺什么條件,然后用(SAS,ASA,SSS)來證明全等;(2)先由菱形的性質(zhì)得出AE=BE=DE,再通過角之間的關(guān)系求出∠2+∠3=90°即∠ADB=90°,所以判定四邊形AGBD是矩形.【詳解】解:證明:∵四邊形是平行四邊形,∴,,.∵點(diǎn)、分別是、的中點(diǎn),∴,.∴.在和中,,∴.解:當(dāng)四邊形是菱形時(shí),四邊形是矩形.證明:∵四邊形是平行四邊形,∴.∵,∴四邊形是平行四邊形.∵四邊形是菱形,∴.∵,∴.∴,.∵,∴.∴.即.∴四邊形是矩形.【點(diǎn)睛】本題主要考查了平行四邊形的基本性質(zhì)和矩形的判定及全等三角形的判定.平行四邊形基本性質(zhì):①平行四邊形兩組對邊分別平行;②平行四邊形的兩組對邊分別相等;③平行四邊形的兩組對角分別相等;④平行四邊形的對角線互相平分.三角形全等的判定條件:SSS,SAS,AAS,ASA.20、(1)見解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒時(shí),△EPQ是直角三角形【解析】

(1)由∠ECF=∠BCD得∠DCF=∠BCE,結(jié)合DC=BC、CE=CF證△DCF≌△BCE即可得;(2)作BE′⊥DA交DA的延長線于E′.當(dāng)點(diǎn)E運(yùn)動(dòng)至點(diǎn)E′時(shí),由DF=BE′知此時(shí)DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°時(shí),由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根據(jù)AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°時(shí),由菱形ABCD的對角線AC⊥BD知EC與AC重合,可得DE=6.【詳解】(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四邊形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如圖1,作BE′⊥DA交DA的延長線于E′.當(dāng)點(diǎn)E運(yùn)動(dòng)至點(diǎn)E′時(shí),DF=BE′,此時(shí)DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴設(shè)AE′=x,則BE′=2x,∴AB=x=6,x=6,則AE′=6∴DE′=6+6,DF=BE′=12,時(shí)間t=6+6,故答案為:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①當(dāng)∠EQP=90°時(shí),如圖2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②當(dāng)∠EPQ=90°時(shí),如圖2②,∵菱形ABCD的對角線AC⊥BD,∴EC與AC重合,∴DE=6,∴t=6秒,綜上所述,t=6秒或6秒時(shí),△EPQ是直角三角形.【點(diǎn)睛】此題是菱形與動(dòng)點(diǎn)問題,考查菱形的性質(zhì),三角形全等的判定定理,等腰三角形的性質(zhì),最短路徑問題,注意(3)中的直角沒有明確時(shí)應(yīng)分情況討論解答.21、(1)y=x2+x﹣;(2)y=﹣x+1;(3)當(dāng)x=﹣2時(shí),最大值為;(4)存在,點(diǎn)D的橫坐標(biāo)為﹣3或或﹣.【解析】

(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,則即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分當(dāng)AP為平行四邊形的一條邊、對角線兩種情況,分別求解即可.【詳解】(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函數(shù)的表達(dá)式為:①;(2)過點(diǎn)D作DF⊥x軸交于點(diǎn)F,過點(diǎn)E作y軸的平行線交直線AD于點(diǎn)M,∵OC∥DF,∴OF=5OA=5,故點(diǎn)D的坐標(biāo)為(﹣5,6),將點(diǎn)A、D的坐標(biāo)代入一次函數(shù)表達(dá)式:y=mx+n得:,解得:即直線AD的表達(dá)式為:y=﹣x+1,(3)設(shè)點(diǎn)E坐標(biāo)為則點(diǎn)M坐標(biāo)為則∵故S△ACE有最大值,當(dāng)x=﹣2時(shí),最大值為;(4)存在,理由:①當(dāng)AP為平行四邊形的一條邊時(shí),如下圖,設(shè)點(diǎn)D的坐標(biāo)為將點(diǎn)A向左平移2個(gè)單位、向上平移4個(gè)單位到達(dá)點(diǎn)P的位置,同樣把點(diǎn)D左平移2個(gè)單位、向上平移4個(gè)單位到達(dá)點(diǎn)Q的位置,則點(diǎn)Q的坐標(biāo)為將點(diǎn)Q的坐標(biāo)代入①式并解得:②當(dāng)AP為平行四邊形的對角線時(shí),如下圖,設(shè)點(diǎn)Q坐標(biāo)為點(diǎn)D的坐標(biāo)為(m,n),AP中點(diǎn)的坐標(biāo)為(0,2),該點(diǎn)也是DQ的中點(diǎn),則:即:將點(diǎn)D坐標(biāo)代入①式并解得:故點(diǎn)D的橫坐標(biāo)為:或或.【點(diǎn)睛】本題考查的是二次函數(shù)綜合運(yùn)用,涉及到圖形平移、平行四邊形的性質(zhì)等,關(guān)鍵是(4)中,用圖形平移的方法求解點(diǎn)的坐標(biāo),本題難度大.22、(1)(2)【解析】

(1)由小亮打第一場,再從其余三人中隨機(jī)選取一人打第一場,求出恰好選中大剛的概率即可;(2)畫樹狀圖得出所有等可能的情況數(shù),找出小瑩和小芳伸“手心”或“手背”恰好相同的情況數(shù),即可求出所求的概率.【詳解】解:(1)∵確定小亮打第一場,∴再從小瑩,小芳和大剛中隨機(jī)選取一人打第一場,恰好選中大剛的概率為;(2)列表如下:所有等可能的情況有8種,其中小瑩和小芳伸“手心”或“手背”恰好相同且與大剛不同的結(jié)果有2個(gè),則小瑩與小芳打第一場的概率為.【點(diǎn)睛】本題主要考查了列表法與樹狀圖法;概率公式.23、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).【解析】

(1)設(shè)OD為x,則BD=AD=3,在RT

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論