版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京四中學2024屆中考數(shù)學全真模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數(shù)學興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為()A.50m B.25m C.(50﹣)m D.(50﹣25)m2.已知拋物線y=x2+bx+c的對稱軸為x=2,若關于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍內有兩個相等的實數(shù)根,則c的取值范圍是(
)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=43.下列關于x的方程中一定沒有實數(shù)根的是()A. B. C. D.4.某廠進行技術創(chuàng)新,現(xiàn)在每天比原來多生產(chǎn)30臺機器,并且現(xiàn)在生產(chǎn)500臺機器所需時間與原來生產(chǎn)350臺機器所需時間相同.設現(xiàn)在每天生產(chǎn)x臺機器,根據(jù)題意可得方程為()A. B. C. D.5.如圖,AD是半圓O的直徑,AD=12,B,C是半圓O上兩點.若,則圖中陰影部分的面積是()A.6π B.12π C.18π D.24π6.下列計算正確的是()A.x2+x3=x5 B.x2?x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x37.七年級1班甲、乙兩個小組的14名同學身高(單位:厘米)如下:甲組158159160160160161169乙組158159160161161163165以下敘述錯誤的是()A.甲組同學身高的眾數(shù)是160B.乙組同學身高的中位數(shù)是161C.甲組同學身高的平均數(shù)是161D.兩組相比,乙組同學身高的方差大8.-3的倒數(shù)是()A.3 B.13 C.-19.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是()A. B. C. D.10.如圖,⊙O的半徑為1,△ABC是⊙O的內接三角形,連接OB、OC,若∠BAC與∠BOC互補,則弦BC的長為()A. B.2 C.3 D.1.5二、填空題(本大題共6個小題,每小題3分,共18分)11.圓柱的底面半徑為1,母線長為2,則它的側面積為_____.(結果保留π)12.因式分解:______.13.如圖,角α的一邊在x軸上,另一邊為射線OP,點P(2,2),則tanα=_____.14.如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A,點B,點C均落在格點上.(1)計算△ABC的周長等于_____.(2)點P、點Q(不與△ABC的頂點重合)分別為邊AB、BC上的動點,4PB=5QC,連接AQ、PC.當AQ⊥PC時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段AQ、PC,并簡要說明點P、Q的位置是如何找到的(不要求證明).___________________________.15.某風扇在網(wǎng)上累計銷量約1570000臺,請將1570000用科學記數(shù)法表示為_____.16.已知一次函數(shù)的圖象與直線y=x+3平行,并且經(jīng)過點(﹣2,﹣4),則這個一次函數(shù)的解析式為_____.三、解答題(共8題,共72分)17.(8分)某商場計劃從廠家購進甲、乙、丙三種型號的電冰箱80臺,其中甲種電冰箱的臺數(shù)是乙種電冰箱臺數(shù)的2倍.具體情況如下表:甲種乙種丙種進價(元/臺)120016002000售價(元/臺)142018602280經(jīng)預算,商場最多支出132000元用于購買這批電冰箱.(1)商場至少購進乙種電冰箱多少臺?(2)商場要求甲種電冰箱的臺數(shù)不超過丙種電冰箱的臺數(shù).為獲得最大利潤,應分別購進甲、乙、丙電冰箱多少臺?獲得的最大利潤是多少?18.(8分)圖1是某市2009年4月5日至14日每天最低氣溫的折線統(tǒng)計圖.圖2是該市2007年4月5日至14日每天最低氣溫的頻數(shù)分布直方圖,根據(jù)圖1提供的信息,補全圖2中頻數(shù)分布直方圖;在這10天中,最低氣溫的眾數(shù)是____,中位數(shù)是____,方差是_____.請用扇形圖表示出這十天里溫度的分布情況.19.(8分)在一個不透明的布袋中裝兩個紅球和一個白球,這些球除顏色外均相同(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是.(2)甲、乙、丙三人依次從袋中摸出一個球,記錄顏色后不放回,試求出乙摸到白球的概率20.(8分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點,于點,交于,求的值(3)如圖,中,,為邊的中點,于點,交于,若,,求.21.(8分)某商場以每件280元的價格購進一批商品,當每件商品售價為360元時,每月可售出60件,為了擴大銷售,商場決定采取適當降價的方式促銷,經(jīng)調查發(fā)現(xiàn),如果每件商品降價1元,那么商場每月就可以多售出5件.降價前商場每月銷售該商品的利潤是多少元?要使商場每月銷售這種商品的利潤達到7200元,且更有利于減少庫存,則每件商品應降價多少元?22.(10分)如圖,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,點E在AB上,求證:△CDA≌△CEB.23.(12分)先化簡,再求值:,再從的范圍內選取一個你最喜歡的值代入,求值.24.解不等式組,并把解集在數(shù)軸上表示出來.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得AB=MN=CM﹣CN,即可得到結論.【詳解】如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).則AB=MN=(50﹣)m.故選C.【點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數(shù)學模型,把實際問題轉化為數(shù)學問題.2、D【解析】解:由對稱軸x=2可知:b=﹣4,∴拋物線y=x2﹣4x+c,令x=﹣1時,y=c+5,x=3時,y=c﹣3,關于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍有實數(shù)根,當△=0時,即c=4,此時x=2,滿足題意.當△>0時,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,當c=﹣5時,此時方程為:﹣x2+4x+5=0,解得:x=﹣1或x=5不滿足題意,當c=3時,此時方程為:﹣x2+4x﹣3=0,解得:x=1或x=3此時滿足題意,故﹣5<c≤3或c=4,故選D.點睛:本題主要考查二次函數(shù)與一元二次方程的關系.理解二次函數(shù)與一元二次方程之間的關系是解題的關鍵.3、B【解析】
根據(jù)根的判別式的概念,求出△的正負即可解題.【詳解】解:A.x2-x-1=0,△=1+4=50,∴原方程有兩個不相等的實數(shù)根,B.,△=36-144=-1080,∴原方程沒有實數(shù)根,C.,,△=10,∴原方程有兩個不相等的實數(shù)根,D.,△=m2+80,∴原方程有兩個不相等的實數(shù)根,故選B.【點睛】本題考查了根的判別式,屬于簡單題,熟悉根的判別式的概念是解題關鍵.4、A【解析】
根據(jù)現(xiàn)在生產(chǎn)500臺機器所需時間與原計劃生產(chǎn)350臺機器所需時間相同,所以可得等量關系為:現(xiàn)在生產(chǎn)500臺機器所需時間=原計劃生產(chǎn)350臺機器所需時間.【詳解】現(xiàn)在每天生產(chǎn)x臺機器,則原計劃每天生產(chǎn)(x﹣30)臺機器.依題意得:,故選A.【點睛】本題考查了分式方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.5、A【解析】
根據(jù)圓心角與弧的關系得到∠AOB=∠BOC=∠COD=60°,根據(jù)扇形面積公式計算即可.【詳解】∵,∴∠AOB=∠BOC=∠COD=60°.∴陰影部分面積=.故答案為:A.【點睛】本題考查的知識點是扇形面積的計算,解題關鍵是利用圓心角與弧的關系得到∠AOB=∠BOC=∠COD=60°.6、B【解析】分析:直接利用合并同類項法則以及同底數(shù)冪的乘除運算法則和積的乘方運算法則分別計算得出答案.詳解:A、不是同類項,無法計算,故此選項錯誤;B、正確;C、故此選項錯誤;D、故此選項錯誤;故選:B.點睛:此題主要考查了合并同類項以及同底數(shù)冪的乘除運算和積的乘方運算,正確掌握運算法則是解題關鍵.7、D【解析】
根據(jù)眾數(shù)、中位數(shù)和平均數(shù)及方差的定義逐一判斷可得.【詳解】A.甲組同學身高的眾數(shù)是160,此選項正確;B.乙組同學身高的中位數(shù)是161,此選項正確;C.甲組同學身高的平均數(shù)是161,此選項正確;D.甲組的方差為,乙組的方差為,甲組的方差大,此選項錯誤.故選D.【點睛】本題考查了眾數(shù)、中位數(shù)和平均數(shù)及方差,掌握眾數(shù)、中位數(shù)和平均數(shù)及方差的定義和計算公式是解題的關鍵.8、C【解析】
由互為倒數(shù)的兩數(shù)之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C9、D【解析】試題分析:A.是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項錯誤;C.是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項正確.故選D.考點:軸對稱圖形.10、A【解析】分析:作OH⊥BC于H,首先證明∠BOC=120,在Rt△BOH中,BH=OB?sin60°=1×,即可推出BC=2BH=,詳解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB?sin60°=1×=,∴BC=2BH=.故選A.點睛:本題考查三角形的外接圓與外心、銳角三角函數(shù)、垂徑定理等知識,解題的關鍵是學會添加常用輔助線.二、填空題(本大題共6個小題,每小題3分,共18分)11、4【解析】
根據(jù)圓柱的側面積公式,計算即可.【詳解】圓柱的底面半徑為r=1,母線長為l=2,則它的側面積為S側=2πrl=2π×1×2=4π.故答案為:4π.【點睛】題考查了圓柱的側面積公式應用問題,是基礎題.12、【解析】
先提取公因式x,再對余下的多項式利用完全平方公式繼續(xù)分解.【詳解】xy1+1xy+x,=x(y1+1y+1),=x(y+1)1.故答案為:x(y+1)1.【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.13、【解析】解:過P作PA⊥x軸于點A.∵P(2,),∴OA=2,PA=,∴tanα=.故答案為.點睛:本題考查了解直角三角形,正切的定義,坐標與圖形的性質,熟記三角函數(shù)的定義是解題的關鍵.14、12連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【解析】
(1)利用勾股定理求出AB,從而得到△ABC的周長;(2)取格點D,E,F(xiàn),G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AP,CQ即為所求.【詳解】解:(1)∵AC=3,BC=4,∠C=90o,∴根據(jù)勾股定理得AB=5,∴△ABC的周長=5+4+3=12.(2)取格點D,E,F(xiàn),G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AQ,CP即為所求。故答案為:(1)12;(2)連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【點睛】本題涉及的知識點有:勾股定理,三角形中位線定理,軸對稱之線路最短問題.15、1.57×1【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將1570000用科學記數(shù)法表示為1.57×1.故答案為1.57×1.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.16、y=x﹣1【解析】分析:根據(jù)互相平行的兩直線解析式的k值相等設出一次函數(shù)的解析式,再把點(﹣2,﹣4)的坐標代入解析式求解即可.詳解:∵一次函數(shù)的圖象與直線y=x+1平行,∴設一次函數(shù)的解析式為y=x+b.∵一次函數(shù)經(jīng)過點(﹣2,﹣4),∴×(﹣2)+b=﹣4,解得:b=﹣1,所以這個一次函數(shù)的表達式是:y=x﹣1.故答案為y=x﹣1.點睛:本題考查了兩直線平行的問題,熟記平行直線的解析式的k值相等設出一次函數(shù)解析式是解題的關鍵.三、解答題(共8題,共72分)17、(1)商場至少購進乙種電冰箱14臺;(2)商場購進甲種電冰箱28臺,購進乙種電冰箱14(臺),購進丙種電冰箱38臺.【解析】
(1)設商場購進乙種電冰箱x臺,則購進甲種電冰箱2x臺,丙種電冰箱(80-3x)臺,根據(jù)“商場最多支出132000元用于購買這批電冰箱”列出不等式,解之即可得;(2)根據(jù)“總利潤=甲種冰箱利潤+乙種冰箱利潤+丙種冰箱利潤”列出W關于x的函數(shù)解析式,結合x的取值范圍,利用一次函數(shù)的性質求解可得.【詳解】(1)設商場購進乙種電冰箱x臺,則購進甲種電冰箱2x臺,丙種電冰箱(80﹣3x)臺.根據(jù)題意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商場至少購進乙種電冰箱14臺;(2)由題意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W隨x的增大而減小,∴當x=14時,W取最大值,且W最大=﹣140×14+22400=20440,此時,商場購進甲種電冰箱28臺,購進乙種電冰箱14(臺),購進丙種電冰箱38臺.【點睛】本題主要考查一次函數(shù)的應用與一元一次不等式的應用,解題的關鍵是理解題意找到題目蘊含的不等關系和相等關系,并據(jù)此列出不等式與函數(shù)解析式.18、(1)作圖見解析;(2)7,7.5,2.8;(3)見解析.【解析】
(1)根據(jù)圖1找出8、9、10℃的天數(shù),然后補全統(tǒng)計圖即可;(2)根據(jù)眾數(shù)的定義,找出出現(xiàn)頻率最高的溫度;按照從低到高排列,求出第5、6兩個溫度的平均數(shù)即為中位數(shù);先求出平均數(shù),再根據(jù)方差的定義列式進行計算即可得解;(3)求出7、8、9、10、11℃的天數(shù)在扇形統(tǒng)計圖中所占的度數(shù),然后作出扇形統(tǒng)計圖即可.【詳解】(1)由圖1可知,8℃有2天,9℃有0天,10℃有2天,補全統(tǒng)計圖如圖;(2)根據(jù)條形統(tǒng)計圖,7℃出現(xiàn)的頻率最高,為3天,所以,眾數(shù)是7;按照溫度從小到大的順序排列,第5個溫度為7℃,第6個溫度為8℃,所以,中位數(shù)為(7+8)=7.5;平均數(shù)為(6×2+7×3+8×2+10×2+11)=×80=8,所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=(8+3+0+8+9),=×28,=2.8;(3)6℃的度數(shù),×360°=72°,7℃的度數(shù),×360°=108°,8℃的度數(shù),×360°=72°,10℃的度數(shù),×360°=72°,11℃的度數(shù),×360°=36°,作出扇形統(tǒng)計圖如圖所示.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.同時考查中位數(shù)、眾數(shù)的求法:給定n個數(shù)據(jù),按從小到大排序,如果n為奇數(shù),位于中間的那個數(shù)就是中位數(shù);如果n為偶數(shù),位于中間兩個數(shù)的平均數(shù)就是中位數(shù).任何一組數(shù)據(jù),都一定存在中位數(shù)的,但中位數(shù)不一定是這組數(shù)據(jù)量的數(shù).給定一組數(shù)據(jù),出現(xiàn)次數(shù)最多的那個數(shù),稱為這組數(shù)據(jù)的眾數(shù).19、(1);(2).【解析】
(1)直接利用概率公式求解;
(2)畫樹狀圖展示所有6種等可能的結果數(shù),再找出乙摸到白球的結果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是;
故答案為:;
(2)畫樹狀圖為:
共有6種等可能的結果數(shù),其中乙摸到白球的結果數(shù)為2,
所以乙摸到白球的概率==.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式求事件A或B的概率.20、(1)相等,理由見解析;(2)2;(3).【解析】
(1)先判斷出AB=AD,再利用同角的余角相等,判斷出∠ABF=∠DAE,進而得出△ABF≌△DAE,即可得出結論;
(2)構造出正方形,同(1)的方法得出△ABD≌△CBG,進而得出CG=AB,再判斷出△AFB∽△CFG,即可得出結論;
(3)先構造出矩形,同(1)的方法得,∠BAD=∠CBP,進而判斷出△ABD∽△BCP,即可求出CP,再同(2)的方法判斷出△CFP∽△AFB,建立方程即可得出結論.【詳解】解:(1)BF=AE,理由:
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=∠D=90°,
∴∠BAE+∠DAE=90°,
∵AE⊥BF,
∴∠BAE+∠ABF=90°,
∴∠ABF=∠DAE,
在△ABF和△DAE中,∴△ABF≌△DAE,
∴BF=AE,(2)如圖2,
過點A作AM∥BC,過點C作CM∥AB,兩線相交于M,延長BF交CM于G,
∴四邊形ABCM是平行四邊形,
∵∠ABC=90°,
∴?ABCM是矩形,
∵AB=BC,
∴矩形ABCM是正方形,
∴AB=BC=CM,
同(1)的方法得,△ABD≌△BCG,
∴CG=BD,
∵點D是BC中點,
∴BD=BC=CM,
∴CG=CM=AB,
∵AB∥CM,
∴△AFB∽△CFG,∴(3)如圖3,在Rt△ABC中,AB=3,BC=4,
∴AC=5,
∵點D是BC中點,
∴BD=BC=2,
過點A作AN∥BC,過點C作CN∥AB,兩線相交于N,延長BF交CN于P,
∴四邊形ABCN是平行四邊形,
∵∠ABC=90°,∴?ABCN是矩形,
同(1)的方法得,∠BAD=∠CBP,
∵∠ABD=∠BCP=90°,
∴△ABD∽△BCP,∴∴∴CP=同(2)的方法,△CFP∽△AFB,∴∴∴CF=.【點睛】本題是四邊形綜合題,主要考查了正
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 質量管理體系實施指導手冊
- 財稅籌劃與風險管理手冊(標準版)
- 辦公室員工培訓效果跟蹤報告制度
- 辦公室內部溝通與協(xié)作制度
- 養(yǎng)老院老人休閑娛樂設施維護制度
- 2026年遂寧市中心醫(yī)院醫(yī)療衛(wèi)生輔助崗項目人員補招募備考題庫及參考答案詳解
- 養(yǎng)老院興趣小組制度
- 2026年猴嘴街道殘疾人專職委員招聘備考題庫含答案詳解
- 2026年閩侯縣振興一鄉(xiāng)村集團有限公司第二次公開招聘6人備考題庫及1套參考答案詳解
- 中國信達山東分公司2026年校園招聘備考題庫完整參考答案詳解
- 中醫(yī)治療黃褐斑課件
- 四川省融媒體中心歷年招聘考試真題庫
- 股東代為出資協(xié)議書
- 消防管道拆除合同協(xié)議
- 青少年交通安全法規(guī)
- 《數(shù)據(jù)統(tǒng)計分析課件》
- OWASP LLM人工智能網(wǎng)絡安全與治理清單(中文版)
- 鉆機檢驗表格
- GB/T 44143-2024科技人才評價規(guī)范
- 河南省洛陽市2023-2024學年高二上學期期末考試英語試題(解析版)
- JGT124-2017 建筑門窗五金件 傳動機構用執(zhí)手
評論
0/150
提交評論