2022屆陜西省華陰市市級名校中考數(shù)學考前最后一卷含解析_第1頁
2022屆陜西省華陰市市級名校中考數(shù)學考前最后一卷含解析_第2頁
2022屆陜西省華陰市市級名校中考數(shù)學考前最后一卷含解析_第3頁
2022屆陜西省華陰市市級名校中考數(shù)學考前最后一卷含解析_第4頁
2022屆陜西省華陰市市級名校中考數(shù)學考前最后一卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆陜西省華陰市市級名校中考數(shù)學考前最后一卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列各數(shù)中是有理數(shù)的是()A.π B.0 C. D.2.下列圖形是中心對稱圖形的是()A. B. C. D.3.下列命題中,正確的是()A.菱形的對角線相等B.平行四邊形既是軸對稱圖形,又是中心對稱圖形C.正方形的對角線不能相等D.正方形的對角線相等且互相垂直4.若⊙O的半徑為5cm,OA=4cm,則點A與⊙O的位置關系是()A.點A在⊙O內 B.點A在⊙O上 C.點A在⊙O外 D.內含5.《九章算術》中有這樣一個問題:“今有甲乙二人持錢不知其數(shù),甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?”題意為:今有甲乙二人,不知其錢包里有多少錢,若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50,問甲、乙各有多少錢?設甲的錢數(shù)為x,乙的錢數(shù)為y,則列方程組為()A. B.C. D.6.估計的值在()A.4和5之間 B.5和6之間 C.6和7之間 D.7和8之間7.在0,-2,5,,-0.3中,負數(shù)的個數(shù)是().A.1 B.2 C.3 D.48.(2011貴州安順,4,3分)我市某一周的最高氣溫統(tǒng)計如下表:最高氣溫(℃)

25

26

27

28

天數(shù)

1

1

2

3

則這組數(shù)據的中位數(shù)與眾數(shù)分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,279.下列敘述,錯誤的是()A.對角線互相垂直且相等的平行四邊形是正方形B.對角線互相垂直平分的四邊形是菱形C.對角線互相平分的四邊形是平行四邊形D.對角線相等的四邊形是矩形10.如圖,以O為圓心的圓與直線交于A、B兩點,若△OAB恰為等邊三角形,則弧AB的長度為()A. B.π C.π D.π二、填空題(共7小題,每小題3分,滿分21分)11.Rt△ABC中,AD為斜邊BC上的高,若,則.12.不等式組的整數(shù)解是_____.13.已知是方程組的解,則3a﹣b的算術平方根是_____.14.如圖,直線a∥b,直線c分別于a,b相交,∠1=50°,∠2=130°,則∠3的度數(shù)為()A.50° B.80° C.100° D.130°15.如圖,校園內有一棵與地面垂直的樹,數(shù)學興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結果保留根號).16.計算:(3+1)(3﹣1)=.17.如圖,甲和乙同時從學校放學,兩人以各自送度勻速步行回家,甲的家在學校的正西方向,乙的家在學校的正東方向,乙家離學校的距離比甲家離學校的距離遠3900米,甲準備一回家就開始做什業(yè),打開書包時發(fā)現(xiàn)錯拿了乙的練習冊.于是立即步去追乙,終于在途中追上了乙并交還了練習冊,然后再以先前的速度步行回家,(甲在家中耽擱和交還作業(yè)的時間忽略不計)結果甲比乙晚回到家中,如圖是兩人之間的距離y米與他們從學校出發(fā)的時間x分鐘的函數(shù)關系圖,則甲的家和乙的家相距_____米.三、解答題(共7小題,滿分69分)18.(10分)隨著高鐵的建設,春運期間動車組發(fā)送旅客量越來越大,相關部門為了進一步了解春運期間動車組發(fā)送旅客量的變化情況,針對2014年至2018年春運期間的鐵路發(fā)送旅客量情況進行了調查,過程如下.(Ⅰ)收集、整理數(shù)據請將表格補充完整:(Ⅱ)描述數(shù)據為了更直觀地顯示動車組發(fā)送旅客量占比的變化趨勢,需要用什么圖(回答“折線圖”或“扇形圖”)進行描述;(Ⅲ)分析數(shù)據、做出推測預估2019年春運期間動車組發(fā)送旅客量占比約為多少,說明你的預估理由.19.(5分)如圖所示,在中,,用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)連接AP當為多少度時,AP平分.20.(8分)如圖①,已知拋物線y=ax2+bx+c的圖像經過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.21.(10分)解方程組:.22.(10分)如圖,∠AOB=45°,點M,N在邊OA上,點P是邊OB上的點.(1)利用直尺和圓規(guī)在圖1確定點P,使得PM=PN;(2)設OM=x,ON=x+4,①若x=0時,使P、M、N構成等腰三角形的點P有個;②若使P、M、N構成等腰三角形的點P恰好有三個,則x的值是____________.23.(12分)某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調查了本校某班的學生,并根據調查結果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:(1)在這次調查中,喜歡籃球項目的同學有______人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為______%,如果學校有800名學生,估計全校學生中有______人喜歡籃球項目.(2)請將條形統(tǒng)計圖補充完整.(3)在被調查的學生中,喜歡籃球的有2名女同學,其余為男同學.現(xiàn)要從中隨機抽取2名同學代表班級參加?;@球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.24.(14分)如圖,四邊形ABCD中,AC平分∠DAB,AC2=AB?AD,∠ADC=90°,E為AB的中點.(1)求證:△ADC∽△ACB;(2)CE與AD有怎樣的位置關系?試說明理由;(3)若AD=4,AB=6,求的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】【分析】根據有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),結合無理數(shù)的定義進行判斷即可得答案.【詳解】A、π是無限不循環(huán)小數(shù),屬于無理數(shù),故本選項錯誤;B、0是有理數(shù),故本選項正確;C、是無理數(shù),故本選項錯誤;D、是無理數(shù),故本選項錯誤,故選B.【點睛】本題考查了實數(shù)的分類,熟知有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù)是解題的關鍵.2、B【解析】

根據中心對稱圖形的概念,軸對稱圖形與中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合,即可解題.A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.考點:中心對稱圖形.【詳解】請在此輸入詳解!3、D【解析】

根據菱形,平行四邊形,正方形的性質定理判斷即可.【詳解】A.菱形的對角線不一定相等,A錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,B錯誤;C.正方形的對角線相等,C錯誤;D.正方形的對角線相等且互相垂直,D正確;故選:D.【點睛】本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.4、A【解析】

直接利用點與圓的位置關系進而得出答案.【詳解】解:∵⊙O的半徑為5cm,OA=4cm,∴點A與⊙O的位置關系是:點A在⊙O內.故選A.【點睛】此題主要考查了點與圓的位置關系,正確①點P在圓外?d>r,②點P在圓上?d=r,③點P在圓內?d<r是解題關鍵.5、A【解析】

設甲的錢數(shù)為x,人數(shù)為y,根據“若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50”,即可得出關于x,y的二元一次方程組,此題得解.【詳解】解:設甲的錢數(shù)為x,乙的錢數(shù)為y,依題意,得:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,找準等量關系,正確列出二元一次方程組是解題的關鍵.6、C【解析】∵,∴.即的值在6和7之間.故選C.7、B【解析】

根據負數(shù)的定義判斷即可【詳解】解:根據負數(shù)的定義可知,這一組數(shù)中,負數(shù)有兩個,即-2和-0.1.故選B.8、A【解析】根據表格可知:數(shù)據25出現(xiàn)1次,26出現(xiàn)1次,27出現(xiàn)2次,28出現(xiàn)3次,∴眾數(shù)是28,這組數(shù)據從小到大排列為:25,26,27,27,28,28,28∴中位數(shù)是27∴這周最高氣溫的中位數(shù)與眾數(shù)分別是27,28故選A.9、D【解析】【分析】根據正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定定理對選項逐一進行分析,即可判斷出答案.【詳解】A.對角線互相垂直且相等的平行四邊形是正方形,正確,不符合題意;B.對角線互相垂直平分的四邊形是菱形,正確,不符合題意;C.對角線互相平分的四邊形是平行四邊形,正確,不符合題意;D.對角線相等的平行四邊形是矩形,故D選項錯誤,符合題意,故選D.【點睛】本題考查了正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定等,熟練掌握相關判定定理是解答此類問題的關鍵.10、C【解析】過點作,∵,∴,,∴為等腰直角三角形,,,∵為等邊三角形,∴,∴.∴.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

利用直角三角形的性質,判定三角形相似,進一步利用相似三角形的面積比等于相似比的性質解決問題.【詳解】如圖,∵∠CAB=90°,且AD⊥BC,∴∠ADB=90°,∴∠CAB=∠ADB,且∠B=∠B,∴△CAB∽△ADB,∴(AB:BC)1=△ADB:△CAB,又∵S△ABC=4S△ABD,則S△ABD:S△ABC=1:4,∴AB:BC=1:1.12、﹣1、0、1【解析】

求出每個不等式的解集,根據找不等式組解集的規(guī)律找出不等式組的解集,即可得出答案.【詳解】,解不等式得:,解不等式得:,不等式組的解集為,不等式組的整數(shù)解為-1,0,1.故答案為:-1,0,1.【點睛】本題考查的知識點是一元一次不等式組的整數(shù)解,解題關鍵是注意解集范圍從而得出整數(shù)解.13、2.【解析】

靈活運用方程的性質求解即可。【詳解】解:由是方程組的解,可得滿足方程組,由①+②的,3x-y=8,即可3a-b=8,故3a﹣b的算術平方根是,故答案:【點睛】本題主要考查二元一次方程組的性質及其解法。14、B【解析】

根據平行線的性質即可解決問題【詳解】∵a∥b,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°,故選B.【點睛】考查平行線的性質,解題的關鍵是熟練掌握平行線的性質,屬于中考基礎題.15、【解析】設出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應用,太陽光線下物體影子的長短不僅與物體有關,而且與時間有關,不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關鍵是根據三角函數(shù)的幾何意義得出各線段的比例關系,從而得出答案.16、1.【解析】

根據平方差公式計算即可.【詳解】原式=(3)2-12=18-1=1故答案為1.【點睛】本題考查的是二次根式的混合運算,掌握平方差公式、二次根式的性質是解題的關鍵.17、5200【解析】設甲到學校的距離為x米,則乙到學校的距離為(3900+x),甲的速度為4y(米/分鐘),則乙的速度為3y(米/分鐘),依題意得:解得所以甲到學校距離為2400米,乙到學校距離為6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【點睛】本題考查一次函數(shù)的應用,二元一次方程組的應用等知識,解題的關鍵是讀懂圖象信息.三、解答題(共7小題,滿分69分)18、(Ⅰ)見表格;(Ⅱ)折線圖;(Ⅲ)60%、之前每年增加的百分比依次為7%、6%、5%、4%,據此預測2019年增加的百分比接近3%.【解析】

(Ⅰ)根據百分比的意義解答可得;(Ⅱ)根據折線圖和扇形圖的特點選擇即可得;(Ⅲ)根據之前每年增加的百分比依次為7%、6%、5%、4%,據此預測2019年增加的百分比接近3%.【詳解】(Ⅰ)年份20142015201620172018動車組發(fā)送旅客量a億人次0.871.141.461.802.17鐵路發(fā)送旅客總量b億人次2.522.763.073.423.82動車組發(fā)送旅客量占比×10034.5%41.3%47.6%52.6%56.8%(Ⅱ)為了更直觀地顯示動車組發(fā)送旅客量占比的變化趨勢,需要用折線圖進行描述,故答案為折線圖;(Ⅲ)預估2019年春運期間動車組發(fā)送旅客量占比約為60%,預估理由是之前每年增加的百分比依次為7%、6%、5%、4%,據此預測2019年增加的百分比接近3%.【點睛】本題考查了統(tǒng)計圖的選擇,根據統(tǒng)計圖的特點正確選擇統(tǒng)計圖是解題的關鍵.19、(1)詳見解析;(2)30°.【解析】

(1)根據線段垂直平分線的作法作出AB的垂直平分線即可;(2)連接PA,根據等腰三角形的性質可得,由角平分線的定義可得,根據直角三角形兩銳角互余的性質即可得∠B的度數(shù),可得答案.【詳解】(1)如圖所示:分別以A、B為圓心,大于AB長為半徑畫弧,兩弧相交于點E、F,作直線EF,交BC于點P,∵EF為AB的垂直平分線,∴PA=PB,∴點P即為所求.(2)如圖,連接AP,∵,∴,∵AP是角平分線,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴當時,AP平分.【點睛】本題考查尺規(guī)作圖,考查了垂直平分線的性質、直角三角形兩銳角互余的性質及等腰三角形的性質,線段垂直平分線上的點到線段兩端的距離相等;熟練掌握垂直平分線的性質是解題關鍵.20、(1)y=x2-4x+3.(2)當m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點D的坐標,利用交點式可得拋物線的解析式;(2)設P(m,m2-4m+3),根據OE的解析式表示點G的坐標,表示PG的長,根據面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構建全等三角形,證明△OMP≌△PNF,根據OM=PN列方程可得點P的坐標;同理可得其他圖形中點P的坐標.詳解:(1)如圖1,設拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標為(,)或(,);綜上所述,點P的坐標是:(,)或(,)或(,)或(,).點睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應用,相似三角形的判定與性質以及解一元二次方程的方法,解第(2)問時需要運用配方法,解第(3)問時需要運用分類討論思想和方程的思想解決問題.21、;;.【解析】分析:把原方程組中的第二個方程通過分解因式降次,轉化為兩個一次方程,再分別和第一方程組合成兩個新的方程組,分別解這兩個新的方程組即可求得原方程組的解.詳解:由方程可得,,;則原方程組轉化為(Ⅰ)或(Ⅱ),解方程組(Ⅰ)得,解方程組(Ⅱ)得,∴原方程組的解是.點睛:本題考查的是二元二次方程組的解法,解題的要點有兩點:(1)把原方程組中的第2個方程通過分解因式降次轉化為兩個二元一次方程,并分別和第1個方程組合成兩個新的方程組;(2)將兩個新的方程組消去y,即可得到關于x的一元二次方程.22、(1)見解析;(2)①1;②:x=0或x=4﹣4或4<x<4;【解析】

(1)分別以M、N為圓心,以大于MN為半徑作弧,兩弧相交與兩點,過兩弧交點的直線就是MN的垂直平分線;(2)①分為PM=PN,MP=MN,NP=NM三種情況進行判斷即可;②如圖1,構建腰長為4的等腰直角△OMC,和半徑為4的⊙M,發(fā)現(xiàn)M在點D的位置時,滿足條件;如圖4,根據等腰三角形三種情況的畫法:分別以M、N為圓心,以MN為半徑畫弧,與OB的交點就是滿足條件的點P,再以MN為底邊的等腰三角形,通過畫圖發(fā)現(xiàn),無論x取何值,以MN為底邊的等腰三角形都存在一個,所以只要滿足以MN為腰的三角形有兩個即可.【詳解】解:(1)如圖所示:(2)①如圖所示:故答案為1.②如圖1,以M為圓心,以4為半徑畫圓,當⊙M與OB相切時,設切點為C,⊙M與OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴當M與D重合時,即時,同理可知:點P恰好有三個;如圖4,取OM=4,以M為圓心,以OM為半徑畫圓.則⊙M與OB除了O外只有一個交點,此時x=4,即以∠PMN為頂角,MN為腰,符合條件的點P有一個,以N圓心,以MN為半徑畫圓,與直線OB相離,說明此時以∠PNM為頂角,以MN為腰,符合條件的點P不存在,還有一個是以NM為底邊的符合條件的點P;點M沿OA運動,到M1時,發(fā)現(xiàn)⊙M1與直線OB有一個交點;∴當時,圓M在移動過程中,則會與OB除了O外有兩個交點,滿足點P恰好有三個;綜上所述,若使點P,M,N構成等腰三角形的點P恰好有三個,則x的值是:x=0或或故答案為x=0或或【點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論