2024屆杭州第十三中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第1頁
2024屆杭州第十三中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第2頁
2024屆杭州第十三中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第3頁
2024屆杭州第十三中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第4頁
2024屆杭州第十三中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆杭州第十三中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線經(jīng)過點,且與直線垂直,則的方程為()A. B.C. D.2.如圖是一三棱錐的三視圖,則此三棱錐內(nèi)切球的體積為()A. B. C. D.3.用長為4,寬為2的矩形做側(cè)面圍成一個圓柱,此圓柱軸截面面積為()A.8 B. C. D.4.命題“”的否定是()A., B.,C., D.,5.如圖,在正方體中,,分別是中點,則異面直線與所成角大小為().A. B. C. D.6.如圖所示,4個散點圖中,不適合用線性回歸模型擬合其中兩個變量的是()A. B.C. D.7.已知,是兩條不同的直線,,是兩個不同的平面,給出下列四個結(jié)論:①,,,則;②若,,,則;③若,,,則;④若,,,則.其中正確結(jié)論的序號是A.①③ B.②③ C.①④ D.②④8.在等差數(shù)列中,若,則的值為()A.15 B.21 C.24 D.189.執(zhí)行如圖所示的程序,已知的初始值為,則輸出的的值是()A. B. C. D.10.設(shè)和分別表示函數(shù)的最大值和最小值,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最大值是__________.12.已知函數(shù),若對任意都有()成立,則的最小值為__________.13.已知數(shù)列是首項為,公差為的等差數(shù)列,若數(shù)列是等比數(shù)列,則___________.14.對于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,則x的取值范圍是________________.15.我國南宋時期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書九章》中獨立提出了一種求三角形面積的方法——“三斜求積術(shù)”,即的,其中分別為內(nèi)角的對邊.若,且則的面積的最大值為____.16.已知向量,則的單位向量的坐標(biāo)為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在平面四邊形中,,,,,.(1)求的長;(2)求的長.18.如圖,在直三棱柱中,,,分別是,,的中點.(1)求證:平面;(2)若,求證:平面平面.19.已知,且(1)當(dāng)時,解不等式;(2)在恒成立,求實數(shù)的取值范圍.20.若是各項均為正數(shù)的數(shù)列的前項和,且.(1)求,的值;(2)設(shè),求數(shù)列的前項和.21.已知函數(shù)為奇函數(shù),且,其中,.(1)求,的值.(2)若,,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

設(shè)直線的方程為,代入點(1,0)的坐標(biāo)即得解.【詳解】設(shè)直線的方程為,由題得.所以直線的方程為.故選D【點睛】本題主要考查直線方程的求法,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.2、D【解析】把此三棱錐嵌入長寬高分別為:的長方體中三棱錐即為所求的三棱錐其中,,,則,故可求得三棱錐各面面積分別為:,,,故表面積為三棱錐體積設(shè)內(nèi)切球半徑為,則故三棱錐內(nèi)切球體積故選3、B【解析】

分別討論當(dāng)圓柱的高為4時,當(dāng)圓柱的高為2時,求出圓柱軸截面面積即可得解.【詳解】解:當(dāng)圓柱的高為4時,設(shè)圓柱的底面半徑為,則,則,則圓柱軸截面面積為,當(dāng)圓柱的高為2時,設(shè)圓柱的底面半徑為,則,則,則圓柱軸截面面積為,綜上所述,圓柱的軸截面面積為,故選:B.【點睛】本題考查了圓柱軸截面面積的求法,屬基礎(chǔ)題.4、B【解析】

含有一個量詞的命題的否定,注意“改量詞,否結(jié)論”.【詳解】改為,改成,則有:.故選:B.【點睛】本題考查含一個量詞的命題的否定,難度較易.5、C【解析】

通過中位線定理可以得到在正方體中,可以得到所以這樣找到異面直線與所成角,通過計算求解.【詳解】分別是中點,所以有而,因此異面直線與所成角為在正方體中,,所以,故本題選C.【點睛】本題考查了異面直線所成的角.6、A【解析】

根據(jù)線性回歸模型建立方法,分析選項,找出散點比較分散且無任何規(guī)律的選項可得答案.【詳解】根據(jù)題意,適合用線性回歸擬合其中兩個變量的散點圖必須散點分布比較集中,且大體接近某一條直線,分析選項可得A選項的散點圖雜亂無章,最不符合條件.故選A【點睛】本題考查了統(tǒng)計案例散點圖,屬于基礎(chǔ)題.7、C【解析】

利用面面垂直的判定定理判斷①;根據(jù)面面平行的判定定理判斷②;利用線面垂直和線面平行的性質(zhì)判斷③;利用線面垂直和面面平行的性質(zhì)判斷④【詳解】①,,或,又,則成立,故正確②若,,或和相交,并不一定平行于,故錯誤③若,,則或,若,則并不一定平行于,故錯誤④若,,,又,成立,故正確綜上所述,正確的命題的序號是①④故選【點睛】本題主要考查了命題的真假判斷和應(yīng)用,解題的關(guān)鍵是理解線面,面面平行與垂直的判斷定理和性質(zhì)定理,屬于基礎(chǔ)題.8、D【解析】

利用等差數(shù)列的性質(zhì),將等式全部化為的形式,再計算。【詳解】因為,且,則,所以.故選D【點睛】本題考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題。9、C【解析】

第一次運行:,滿足循環(huán)條件因而繼續(xù)循環(huán);接下來繼續(xù)寫出第二次、第三次運算,直至,然后輸出的值.【詳解】初始值第一次運行:,滿足循環(huán)條件因而繼續(xù)循環(huán);第二次運行:,滿足循環(huán)條件因而繼續(xù)循環(huán);第三次運行:,不滿足循環(huán)條件因而繼續(xù)循環(huán),跳出循環(huán);此時.故選:C【點睛】本題是一道關(guān)于循環(huán)結(jié)構(gòu)的問題,需要借助循環(huán)結(jié)構(gòu)的相關(guān)知識進行解答,需掌握循環(huán)結(jié)構(gòu)的兩種形式,屬于基礎(chǔ)題.10、C【解析】

根據(jù)余弦函數(shù)的值域,確定出的最大值和最小值,即可計算出的值.【詳解】因為的值域為,所以的最大值,所以的最小值,所以.故選:C.【點睛】本題考查余弦型函數(shù)的最值問題,難度較易.求解形如的函數(shù)的值域,注意借助余弦函數(shù)的有界性進行分析.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分析:利用兩角和正弦公式簡化為y=,從而得到函數(shù)的最大值.詳解:y=sinx+cosx==.∴函數(shù)的最大值是故答案為點睛:本題考查了兩角和正弦公式,考查了正弦函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.12、【解析】

根據(jù)和的取值特點,判斷出兩個值都是最值,然后根據(jù)圖象去確定最小值.【詳解】因為對任意成立,所以取最小值,取最大值;取最小值時,與必為同一周期內(nèi)的最小值和最大值的對應(yīng)的,則,且,故.【點睛】任何一個函數(shù),若有對任何定義域成立,此時必有:,.13、或【解析】

由等比數(shù)列的定義得出,可得出,利用兩角和與差的余弦公式化簡可求得的值.【詳解】由于數(shù)列是首項為,公差為的等差數(shù)列,則,,又數(shù)列是等比數(shù)列,則,即,即,即,整理得,即,可得,,因此,或.故答案為:或.【點睛】本題考查利用等差數(shù)列和等比數(shù)列的定義求參數(shù),同時也涉及了兩角和與差的余弦公式的化簡計算,考查計算能力,屬于中等題.14、(-∞,-1)∪(3,+∞)【解析】不等式可化為m(x-1)+x2-4x+3>0在0≤m≤4時恒成立.令f(m)=m(x-1)+x2-4x+3.則??即x<-1或x>3.故答案為(-∞,-1)∪(3,+∞)15、【解析】

由已知利用正弦定理可求,代入“三斜求積”公式即可求得答案.【詳解】因為,所以整理可得,由正弦定理得因為,所以所以當(dāng)時,的面積的最大值為【點睛】本題用到的知識點有同角三角函數(shù)的基本關(guān)系式,兩角和的正弦公式,正弦定理等,考查學(xué)生分析問題的能力和計算整理能力.16、.【解析】

由結(jié)論“與方向相同的單位向量為”可求出的坐標(biāo).【詳解】,所以,,故答案為.【點睛】本題考查單位向量坐標(biāo)的計算,考查共線向量的坐標(biāo)運算,充分利用共線單位向量的結(jié)論可簡化計算,考查運算求解能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)在中,先得到再利用正弦定理得到.(2)在中,計算,由余弦定理得到,再用余弦定理得到.【詳解】(1)在中,,則,又由正弦定理,得(2)在中,,則,又即是等腰三角形,得.由余弦定理,得所以.在中,由余弦定理,得所以.【點睛】本題考查了正弦定理和余弦定理,意在考查學(xué)生利用正余弦定理解決問題的能力.18、(1)詳見解析(2)詳見解析【解析】

(1)利用中位線定理可得∥,從而得證;(2)先證明,從而有平面,進而可得平面平面.【詳解】(1)因為分別是的中點,所以∥.因為平面,平面,所以∥平面.(2)在直三棱柱中,平面,因為平面,所以.因為,且是的中點,所以.因為,平面,所以平面.因為平面,所以平面平面.【點睛】垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19、(1);(2).【解析】試題分析:(1)當(dāng)時,可得,即為,由對數(shù)函數(shù)的單調(diào)性,可得不不等式的解集;(2)由在上恒成立,得在上恒成立,討論,根據(jù)的范圍,由恒成立思想,可得的范圍.試題解析:(1)當(dāng)時,解不等式,得,即,故不等式的解集為.(2)由在恒成立,得在恒成立,①當(dāng)時,有,得,②當(dāng)時,有,得,故實數(shù)的取值范圍.20、(1)1,3;(2).【解析】

(1)當(dāng)時,,解得.由數(shù)列為正項數(shù)列,可得.當(dāng)時,,又,解得.由,解得;(2)由.可得.當(dāng)時,.當(dāng)時,,可得.由.利用裂項求和方法即可得出.【詳解】(1)當(dāng)時,,解得.?dāng)?shù)列為正項數(shù)列,∴.當(dāng)時,,又,解得.由,解得.(2),∴.∴.當(dāng)時,.當(dāng)時,.時也符合上式.∴..故.【點睛】本題考查了數(shù)列遞推關(guān)系、通項公式、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.21、(1);(2).【解析】試題分析:(1)先根據(jù)奇函數(shù)性質(zhì)得y2=cos(2x+θ)為奇函數(shù),解得θ=,再根據(jù)解得a(2)根據(jù)條件化簡得sinα=,根據(jù)同角三角函數(shù)關(guān)系得cosα,最后根據(jù)兩角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論