2023-2024學(xué)年江蘇南京市鹽城市高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第1頁
2023-2024學(xué)年江蘇南京市鹽城市高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第2頁
2023-2024學(xué)年江蘇南京市鹽城市高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第3頁
2023-2024學(xué)年江蘇南京市鹽城市高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第4頁
2023-2024學(xué)年江蘇南京市鹽城市高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年江蘇南京市鹽城市高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知且,則的取值范圍是()A. B. C. D.2.給出函數(shù)為常數(shù),且,,無論a取何值,函數(shù)恒過定點P,則P的坐標是A. B. C. D.3.如圖,A,B是半徑為1的圓周上的定點,P為圓周上的動點,∠APB是銳角,大小為.圖中△PAB的面積的最大值為()A.+sin2 B.sin+sin2C.+sin D.+cos4.設(shè),表示兩條直線,,表示兩個平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則5.函數(shù)的零點所在的區(qū)間是()A. B. C. D.6.若函數(shù)在處取最小值,則等于()A.3 B. C. D.47.已知,函數(shù)的最小值是()A.5 B.4 C.8 D.68.設(shè)和分別表示函數(shù)的最大值和最小值,則等于()A. B. C. D.9.在下列結(jié)論中,正確的為()A.兩個有共同起點的單位向量,其終點必相同B.向量與向量的長度相等C.向量就是有向線段D.零向量是沒有方向的10.在區(qū)間[–1,1]上任取兩個數(shù)x和y,則x2+y2≥1的概率為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若數(shù)列滿足,,則數(shù)列的通項公式______.12.數(shù)列是等比數(shù)列,,,則的值是________.13.已知向量夾角為,且,則__________.14.方程cosx=15.已知點是所在平面內(nèi)的一點,若,則__________.16.用列舉法表示集合__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.選修4-5:不等式選講已知函數(shù),M為不等式的解集.(Ⅰ)求M;(Ⅱ)證明:當a,b時,.18.求函數(shù)的單調(diào)遞增區(qū)間.19.已知以點為圓心的圓C被直線截得的弦長為.(1)求圓C的標準方程:(2)求過與圓C相切的直線方程:(3)若Q是直線上的動點,QR,QS分別切圓C于R,S兩點.試問:直線RS是否恒過定點?若是,求出恒過點坐標:若不是,說明理由.20.記為等差數(shù)列的前項和,已知,.(1)求的通項公式;(2)求,并求的最小值.21.已知圓關(guān)于直線對稱,半徑為,且圓心在第一象限.(Ⅰ)求圓的方程;(Ⅱ)若直線與圓相交于不同兩點、,且,求實數(shù)的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】分析:,由,可得,又,可得,化簡整理即可得出.詳解:,由,可得,又,可得,化為,解得,則的取值范圍是.故選:A.點睛:本題考查了基本不等式的性質(zhì)、一元二次不等式的解法,考查了推理能力與計算能力,屬于中檔題.2、D【解析】試題分析:因為恒過定點,所以函數(shù)恒過定點.故選D.考點:指數(shù)函數(shù)的性質(zhì).3、B【解析】

由正弦定理可得,,則,,當點在的中垂線上時,取得最大值,此時的面積最大,求解即可.【詳解】在中,由正弦定理可得,,則.,當點在的中垂線上時,取得最大值,此時的面積最大.取的中點,過點作的垂線,交圓于點,取圓心為,則(為銳角),.所以的面積最大為.故選B.【點睛】本題考查了三角形的面積的計算、正弦定理的應(yīng)用,考查了三角函數(shù)的化簡,考查了計算能力,屬于基礎(chǔ)題.4、D【解析】

對選項進行一一判斷,選項D為面面垂直判定定理.【詳解】對A,與可能異面,故A錯;對B,可能在平面內(nèi);對C,與平面可能平行,故C錯;對D,面面垂直判定定理,故選D.【點睛】本題考查空間中線、面位置關(guān)系,判斷一個命題為假命題,只要能舉出反例即可.5、B【解析】

根據(jù)零點存在性定理即可求解.【詳解】由函數(shù),則,,故函數(shù)的零點在區(qū)間上.故選:B【點睛】本題考查了利用零點存在性定理判斷零點所在的區(qū)間,需熟記定理內(nèi)容,屬于基礎(chǔ)題.6、A【解析】

將函數(shù)的解析式配湊為,再利用基本不等式求出該函數(shù)的最小值,利用等號成立得出相應(yīng)的值,可得出的值.【詳解】當時,,則,當且僅當時,即當時,等號成立,因此,,故選A.【點睛】本題考查基本不等式等號成立的條件,利用基本不等式要對代數(shù)式進行配湊,注意“一正、二定、三相等”這三個條件的應(yīng)用,考查計算能力,屬于中等題.7、D【解析】試題分析:因為該函數(shù)的單調(diào)性較難求,所以可以考慮用不等式來求最小值,,因為,由重要不等式可知,所以,本題正確選項為D.考點:重要不等式的運用.8、C【解析】

根據(jù)余弦函數(shù)的值域,確定出的最大值和最小值,即可計算出的值.【詳解】因為的值域為,所以的最大值,所以的最小值,所以.故選:C.【點睛】本題考查余弦型函數(shù)的最值問題,難度較易.求解形如的函數(shù)的值域,注意借助余弦函數(shù)的有界性進行分析.9、B【解析】

逐一分析選項,得到答案.【詳解】A.單位向量的方向任意,所以當起點相同時,終點在以起點為圓心的單位圓上,終點不一定相同,所以選項不正確;B.向量與向量是相反向量,方向相反,長度相等,所以選項正確;C.向量是既有大小,又有方向的向量,可以用有向線段表示,但不能說向量就是有向線段,所以選項不正確;D.規(guī)定零向量的方向任意,而不是沒有方向,所以選項不正確.故選B.【點睛】本題考查了向量的基本概念,屬于基礎(chǔ)題型.10、A【解析】由題意知,所有的基本事件構(gòu)成的平面區(qū)域為,其面積為.設(shè)“在區(qū)間[-1,1]上任選兩個數(shù),則”為事件A,則事件A包含的基本事件構(gòu)成的平面區(qū)域為,其面積為.由幾何概型概率公式可得所求概率為.選A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

在等式兩邊取倒數(shù),可得出,然后利用等差數(shù)列的通項公式求出的通項公式,即可求出.【詳解】,等式兩邊同時取倒數(shù)得,.所以,數(shù)列是以為首項,以為公差的等差數(shù)列,.因此,.故答案為:.【點睛】本題考查利用倒數(shù)法求數(shù)列通項,同時也考查了等差數(shù)列的定義,考查計算能力,屬于中等題.12、【解析】

由題得計算得解.【詳解】由題得,所以.因為等比數(shù)列同號,所以.故答案為:【點睛】本題主要考查等比數(shù)列的性質(zhì)和等比中項的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.13、【解析】試題分析:的夾角,,,,.考點:向量的運算.【思路點晴】平面向量的數(shù)量積計算問題,往往有兩種形式,一是利用數(shù)量積的定義式,二是利用數(shù)量積的坐標運算公式,涉及幾何圖形的問題,先建立適當?shù)钠矫嬷苯亲鴺讼担善鸬交睘楹喌拿钣?利用向量夾角公式、模公式及向量垂直的充要條件,可將有關(guān)角度問題、線段長問題及垂直問題轉(zhuǎn)化為向量的數(shù)量積來解決.列出方程組求解未知數(shù).14、x|x=2kπ±【解析】

由誘導(dǎo)公式可得cosx=sinπ【詳解】因為方程cosx=sinπ所以x=2kπ±π故答案為x|x=2kπ±π【點睛】本題考查解三角函數(shù)的方程,余弦函數(shù)的周期性和誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.15、【解析】

設(shè)為的中點,為的中點,為的中點,由得到,再進一步分析即得解.【詳解】如圖,設(shè)為的中點,為的中點,為的中點,因為,所以可得,整理得.又,所以,所以,又,所以.故答案為【點睛】本題主要考查向量的運算法則和共線向量,意在考查學(xué)生對這些知識的理解掌握水平,解答本題的關(guān)鍵是作輔助線,屬于中檔題.16、【解析】

先將的表示形式求解出來,然后根據(jù)范圍求出的可取值.【詳解】因為,所以,又因為,所以,此時或,則可得集合:.【點睛】本題考查根據(jù)三角函數(shù)值求解給定區(qū)間中變量的值,難度較易.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)詳見解析.【解析】試題分析:(I)先去掉絕對值,再分,和三種情況解不等式,即可得;(II)采用平方作差法,再進行因式分解,進而可證當,時,.試題解析:(I)當時,由得解得;當時,;當時,由得解得.所以的解集.(Ⅱ)由(Ⅰ)知,當時,,從而,因此【考點】絕對值不等式,不等式的證明.【名師點睛】形如(或)型的不等式主要有兩種解法:(1)分段討論法:利用絕對值號內(nèi)式子對應(yīng)的方程的根,將數(shù)軸分為,,(此處設(shè))三個部分,在每個部分去掉絕對值號并分別列出對應(yīng)的不等式進行求解,然后取各個不等式解集的并集.(2)圖象法:作出函數(shù)和的圖象,結(jié)合圖象求解.18、()【解析】

先化簡函數(shù)得到,再利用復(fù)合函數(shù)單調(diào)性原則結(jié)合整體法求單調(diào)區(qū)間即可.【詳解】,令,則,因為是的一次函數(shù),且在定義域上單調(diào)遞增,所以要求的單調(diào)遞增區(qū)間,即求的單調(diào)遞減區(qū)間,即(),∴(),即(),∴函數(shù)的單調(diào)遞增區(qū)間為().【點睛】本題考查求復(fù)合型三角函數(shù)的單調(diào)區(qū)間,答題時注意,復(fù)合函數(shù)的單調(diào)性遵循“同增異減”法則.19、(1)(2)或(3)直線RS恒過定點【解析】

(1)由弦長可得,進而求解即可;(2)分別討論直線的斜率存在與不存在的情況,再利用圓心到直線距離等于半徑求解即可;(3)由QR,QS分別切圓C于R,S兩點,可知,在以為直徑的圓上,設(shè)為,則可得到以為直徑的圓的方程,與圓聯(lián)立可得,由求解即可【詳解】(1)由題,設(shè)點到直線的距離為,則,則弦長,解得,所以圓的標準方程為:(2)當切線斜率不存在時,直線方程為,圓心到直線距離為2,故此時相切;當切線斜率存在時,設(shè)切線方程為,即,則,解得,則直線方程為,即,綜上,切線方程為或(3)直線RS恒過定點,由題,,則,在以為直徑的圓上,設(shè)為,則以為直徑的圓的方程為:,整理可得,與圓:聯(lián)立可得:,即,令,解得,故無論取何值時,直線恒過定點【點睛】本題考查圓的方程,考查已知圓外一點求切線方程,考查直線恒過定點問題20、(1)an=3n–4,(3)Sn=n3–8n,最小值為–1.【解析】分析:(1)根據(jù)等差數(shù)列前n項和公式,求出公差,再代入等差數(shù)列通項公式得結(jié)果,(3)根據(jù)等差數(shù)列前n項和公式得的二次函數(shù)關(guān)系式,根據(jù)二次函數(shù)對稱軸以及自變量為正整數(shù)求函數(shù)最值.詳解:(1)設(shè){an}的公差為d,由題意得3a1+3d=–3.由a1=–7得d=3.所以{an}的通項公式為an=3n–4.(3)由(1)得Sn=n3–8n=(n–4)3–1.所以當n=4時,Sn取得最小值,最小值為–1.點睛:數(shù)列是特殊的函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論