版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省寧德市高中同心順聯(lián)盟校2023-2024學(xué)年高一下數(shù)學(xué)期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.點是角終邊上一點,則的值為()A. B. C. D.2.已知函數(shù),下列結(jié)論錯誤的是()A.既不是奇函數(shù)也不是偶函數(shù) B.在上恰有一個零點C.是周期函數(shù) D.在上是增函數(shù)3.在中,,是邊上的一點,,若為銳角,的面積為20,則()A. B. C. D.4.設(shè)在中,角所對的邊分別為,若,則的形狀為()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不確定5.設(shè)函數(shù),其中為已知實常數(shù),,則下列命題中錯誤的是()A.若,則對任意實數(shù)恒成立;B.若,則函數(shù)為奇函數(shù);C.若,則函數(shù)為偶函數(shù);D.當(dāng)時,若,則().6.下列正確的是()A.若a,b∈R,則B.若x<0,則x+≥-2=-4C.若ab≠0,則D.若x<0,則2x+2-x>27.已知函數(shù)在區(qū)間上至少取得2次最大值,則正整數(shù)t的最小值是()A.6 B.7 C.8 D.98.一個長方體共一頂點的三條棱長分別是,這個長方體它的八個頂點都在同一個球面上,這個球的表面積是()A.12π B.18π C.36π D.6π9.關(guān)于的不等式對一切實數(shù)都成立,則的取值范圍是()A. B. C. D.10.2019年是新中國成立70周年,渦陽縣某中學(xué)為慶祝新中國成立70周年,舉辦了“我和我的祖國”演講比賽,某選手的6個得分去掉一個最高分,去掉一個最低分,4個剩余分數(shù)的平均分為91.現(xiàn)場制作的6個分數(shù)的莖葉圖后來有1個數(shù)據(jù)模糊,無法辨認,在圖中以表示,則4個剩余分數(shù)的方差為()A.1 B. C.4 D.6二、填空題:本大題共6小題,每小題5分,共30分。11._______________.12.一個幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為.13.將一個圓錐截成圓臺,已知截得的圓臺的上、下底面面積之比是1:4,截去的小圓錐母線長為2,則截得的圓臺的母線長為________.14.若,則實數(shù)的值為_______.15.設(shè)ω為正實數(shù).若存在a、b(π≤a<b≤2π),使得16.三菱柱ABC-A1B1C1中,底面邊長和側(cè)棱長都相等,BAA1=CAA1=60°則異面直線AB1與BC1所成角的余弦值為____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的最小正周期為,且直線是其圖象的一條對稱軸.(1)求函數(shù)的解析式;(2)在中,角、、所對的邊分別為、、,且,,若角滿足,求的取值范圍;(3)將函數(shù)的圖象向右平移個單位,再將所得的圖象上每一點的縱坐標不變,橫坐標伸長為原來的倍后所得到的圖象對應(yīng)的函數(shù)記作,已知常數(shù),,且函數(shù)在內(nèi)恰有個零點,求常數(shù)與的值.18.設(shè)數(shù)列的前項和為,已知.(1)求,的值;(2)求證:數(shù)列是等比數(shù)列.19.泉州與福州兩地相距約200千米,一輛貨車從泉州勻速行駛到福州,規(guī)定速度不得超過千米/時,已知貨車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度千米/時的平方成正比,比例系數(shù)為0.01;固定部分為64元.(1)把全程運輸成本元表示為速度千米/時的函數(shù),并指出這個函數(shù)的定義域;(2)為了使全程運輸成本最小,貨車應(yīng)以多大速度行駛?20.已知的三個內(nèi)角的對邊分別是,且.(1)求角的大??;(2)若的面積為,求的周長.21.已知直線,,是三條不同的直線,其中.(1)求證:直線恒過定點,并求出該點的坐標;(2)若以,的交點為圓心,為半徑的圓與直線相交于兩點,求的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
利用三角函數(shù)的定義求出的值,然后利用誘導(dǎo)公式可求出的值.【詳解】由三角函數(shù)的定義可得,由誘導(dǎo)公式可得.故選A.【點睛】本題考查三角函數(shù)的定義,同時也考查了利用誘導(dǎo)公式求值,在利用誘導(dǎo)公式求值時,充分理解“奇變偶不變,符號看象限”這個規(guī)律,考查計算能力,屬于基礎(chǔ)題.2、B【解析】
將函數(shù)利用同角三角函數(shù)的基本關(guān)系,化成,再對選項進行一一驗證,即可得答案.【詳解】∵,對A,∵,∴既不是奇函數(shù)也不是偶函數(shù),故A命題正確;對B,令,解關(guān)于的一元二次方程得:,∵,∴方程存在兩個根,∴在上有兩個零點,故B錯誤;對C,顯然是函數(shù)的一個周期,故C正確;對D,令,則,∵在單調(diào)遞減,且,又∵在單調(diào)遞減,∴在上是增函數(shù),故D正確;故選:B【點睛】本題考查復(fù)合函數(shù)的單調(diào)性、奇偶性、周期性、零點,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意復(fù)合函數(shù)周增異減原則.3、C【解析】
先利用面積公式計算出,計算出,運用余弦定理計算出,利用正弦定理計算出,在中運用正弦定理求解出.【詳解】解:由的面積公式可知,,可得,為銳角,可得在中,,即有,由可得,由可知.故選.【點睛】本題考查正弦定理與余弦定理在解三角形中的應(yīng)用,考查方程思想,屬于中檔題.4、B【解析】
利用正弦定理可得,結(jié)合三角形內(nèi)角和定理與誘導(dǎo)公式可得,從而可得結(jié)果.【詳解】因為,所以由正弦定理可得,,所以,所以是直角三角形.【點睛】本題主要考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.弦定理是解三角形的有力工具,其常見用法有以下幾種:(1)知道兩邊和一邊的對角,求另一邊的對角(一定要注意討論鈍角與銳角);(2)知道兩角與一個角的對邊,求另一個角的對邊;(3)證明化簡過程中邊角互化;(4)求三角形外接圓半徑.5、D【解析】
利用兩角和的余弦公式化簡表達式.對于A選項,將化簡得到的表達式代入上述表達式,可判斷出A選項為真命題.對于B選項,將化簡得到的表達式代入上述表達式,可判斷出為奇函數(shù),由此判斷出B選項為真命題.對于C選項,將化簡得到的表達式代入上述表達式,可判斷出為偶函數(shù),由此判斷出C選項為真命題.對于D選項,根據(jù)、,求得的零點的表達式,由此求得(),進而判斷出D選項為假命題.【詳解】.不妨設(shè).為已知實常數(shù).若,則得;若,則得.于是當(dāng)時,對任意實數(shù)恒成立,即命題A是真命題;當(dāng)時,,它為奇函數(shù),即命題B是真命題;當(dāng)時,,它為偶函數(shù),即命題C是真命題;當(dāng)時,令,則,上述方程中,若,則,這與矛盾,所以.將該方程的兩邊同除以得,令(),則,解得().不妨取,(且),則,即(),所以命題D是假命題.故選:D【點睛】本小題主要考查兩角和的余弦公式,考查三角函數(shù)的奇偶性,考查三角函數(shù)零點有關(guān)問題的求解,考查同角三角函數(shù)的基本關(guān)系式,屬于中檔題.6、D【解析】對于A,當(dāng)ab<0時不成立;對于B,若x<0,則x+=-≤-2=-4,當(dāng)且僅當(dāng)x=-2時,等號成立,因此B選項不成立;對于C,取a=-1,b=-2,+=-<a+b=-3,所以C選項不成立;對于D,若x<0,則2x+2-x>2成立.故選D.7、C【解析】
先根據(jù)三角函數(shù)的性質(zhì)可推斷出函數(shù)的最小正周期為6,進而推斷出,進而求得t的范圍,進而求得t的最小值.【詳解】函數(shù)的周期T=6,則,∴,∴正整數(shù)t的最小值是8.故選:C.【點睛】本題主要考查三角函數(shù)的周期性以及正弦函數(shù)的簡單性質(zhì),屬于基礎(chǔ)題.8、A【解析】
先求長方體的對角線的長度,就是球的直徑,然后求出它的表面積.【詳解】長方體的體對角線的長是,所以球的半徑是:,所以該球的表面積是,故選A.【點睛】該題考查的是有關(guān)長方體的外接球的表面積問題,在解題的過程中,首先要明確長方體的外接球的球心應(yīng)在長方體的中心處,即長方體的體對角線是其外接球的直徑,從而求得結(jié)果.9、D【解析】
特值,利用排除法求解即可.【詳解】因為當(dāng)時,滿足題意,所以可排除選項B、C、A,故選D【點睛】不等式恒成立問題有兩個思路:求最值,說明恒成立參變分離,再求最值。10、B【解析】
由題意得x≥3,由此能求出4個剩余數(shù)據(jù)的方差.【詳解】由題意得x≥3,則4個剩余分數(shù)的方差為:s2[(93﹣91)2+(90﹣91)2+(90﹣91)2+(91﹣91)2].故選B.【點睛】本題考查了方差的計算問題,也考查了莖葉圖的性質(zhì)、平均數(shù)、方差等基礎(chǔ)知識,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】
利用裂項求和法將化簡為,再求極限即可.【詳解】令...故答案為:【點睛】本題主要考查數(shù)列求和中的列項求和,同時考查了極限的求法,屬于中檔題.12、【解析】該幾何體是由兩個高為1的圓錐與一個高為2的圓柱組合而成,所以該幾何體的體積為.考點:本題主要考查三視圖及幾何體體積的計算.13、2【解析】
由截得圓臺上,下底面積之比可得上,下底面半徑之比,再根據(jù)小圓錐的母線即可得圓臺母線.【詳解】設(shè)截得的圓臺的母線長為.因為截得的圓臺的上、下底面面積之比是1:4,所以截得的圓臺的上、下底面半徑之比是1:2.因為截去的小圓錐母線長為2,所以,解得.【點睛】本題考查求圓臺的母線,屬于基礎(chǔ)題.14、【解析】
由得,代入方程即可求解.【詳解】,.,,,即,故填.【點睛】本題主要考查了反三角函數(shù)的定義及運算性質(zhì),屬于中檔題.15、ω∈[【解析】
由sinωa+sinωb=2?sinωa=sinωb=1.而[ωa,ωb]?[ωπ,2ωπ]【詳解】由sinωa+而[ωa,ωb]?[ωπ,2ωπ],故已知條件等價于:存在整數(shù)ωπ當(dāng)ω≥4時,區(qū)間[ωπ,2ωπ]的長度不小于4π當(dāng)0<ω<4時,注意到,[ωπ故只要考慮如下幾種情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9綜上,并注意到ω≥4也滿足條件,知ω∈[9故答案為:ω∈[【點睛】本題主要考查三角函數(shù)的圖像和性質(zhì),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.16、【解析】
如圖設(shè)設(shè)棱長為1,則,因為底面邊長和側(cè)棱長都相等,且所以,所以,,,設(shè)異面直線的夾角為,所以.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3),.【解析】
(1)由函數(shù)的周期公式可求出的值,求出函數(shù)的對稱軸方程,結(jié)合直線為一條對稱軸結(jié)合的范圍可得出的值,于此得出函數(shù)的解析式;(2)由得出,再由結(jié)合銳角三角函數(shù)得出,利用正弦定理以及內(nèi)角和定理得出,由條件得出,于此可計算出的取值范圍;(3)令,得,換元得出,得出方程,設(shè)該方程的兩根為、,由韋達定理得出,分(ii)、;(ii),;(iii),三種情況討論,計算出關(guān)于的方程在一個周期區(qū)間上的實根個數(shù),結(jié)合已知條件得出與的值.【詳解】(1)由三角函數(shù)的周期公式可得,,令,得,由于直線為函數(shù)的一條對稱軸,所以,,得,由于,,則,因此,;(2),由三角形的內(nèi)角和定理得,.,且,,.,由,得,由銳角三角函數(shù)的定義得,,由正弦定理得,,,,且,,,.,因此,的取值范圍是;(3)將函數(shù)的圖象向右平移個單位,得到函數(shù),再將所得的圖象上每一點的縱坐標不變,橫坐標伸長為原來的倍后所得到的圖象對應(yīng)的函數(shù)為,,令,可得,令,得,,則關(guān)于的二次方程必有兩不等實根、,則,則、異號,(i)當(dāng)且時,則方程和在區(qū)間均有偶數(shù)個根,從而方程在也有偶數(shù)個根,不合乎題意;(ii)當(dāng),則,當(dāng)時,只有一根,有兩根,所以,關(guān)于的方程在上有三個根,由于,則方程在上有個根,由于方程在區(qū)間上只有一個根,在區(qū)間上無實解,方程在區(qū)間上無實數(shù)解,在區(qū)間上有兩個根,因此,關(guān)于的方程在區(qū)間上有個根,在區(qū)間上有個根,不合乎題意;(iii)當(dāng)時,則,當(dāng)時,只有一根,有兩根,所以,關(guān)于的方程在上有三個根,由于,則方程在上有個根,由于方程在區(qū)間上無實數(shù)根,在區(qū)間上只有一個實數(shù)根,方程在區(qū)間上有兩個實數(shù)解,在區(qū)間上無實數(shù)解,因此,關(guān)于的方程在區(qū)間上有個根,在區(qū)間上有個根,此時,,得.綜上所述:,.【點睛】本題考查利用三角函數(shù)的性質(zhì)求三角函數(shù)的解析式,以及三角形中的取值范圍問題,以及三角函數(shù)零點個數(shù)問題,同時也涉及了復(fù)合函數(shù)方程解的個數(shù)問題,考查分類討論思想的應(yīng)用,綜合性較強,屬于難題.18、(1),(2)見解析【解析】
(1)依次令,,解出即可。(2)由知當(dāng)時,兩式相減,化簡即可得證。【詳解】解(1)∵,∴當(dāng)時,;當(dāng)時,,∴;當(dāng)時,,∴.(2)證明:∵,①∴當(dāng)時,,②①-②得,∴,即.∴.∵.∴,∴.即是以4為首項,2為公比的等比數(shù)列.【點睛】本題考查公式的應(yīng)用,屬于基礎(chǔ)題。19、(1),;(2),貨車應(yīng)以千米/時速度行駛,貨車應(yīng)以千米/時速度行駛【解析】
(1)先計算出從泉州勻速行駛到福州所用時間,然后乘以每小時的運輸成本(可變部分加固定部分),由此求得全程運輸成本,并根據(jù)速度限制求得定義域.(2)由,,對進行分類討論.當(dāng)時,利用基本不等式求得行駛速度.當(dāng)時,根據(jù)的單調(diào)性求得行駛速度.【詳解】(1)依題意一輛貨車從泉州勻速行駛到福州所用時間為小時,全程運輸成本為,所求函數(shù)定義域為;(2)當(dāng)時,故有,當(dāng)且僅當(dāng),即時,等號成立.當(dāng)時,易證在上單調(diào)遞減故當(dāng)千米/時,全程運輸成本最小.綜上,為了使全程運輸成本最小,,貨車應(yīng)以千米/時速度
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 超聲科檢查互認制度
- 2026新疆北京銀行烏魯木齊分行招聘參考考試試題附答案解析
- 2026山東濟南市天橋區(qū)所屬事業(yè)單位招聘初級綜合類崗位人員參考考試試題附答案解析
- 2026福建廈門工學(xué)院誠聘軍隊院校退役高層次人才參考考試題庫附答案解析
- 2026內(nèi)蒙古鄂爾多斯市城投商業(yè)運營管理有限公司招聘46人備考考試試題附答案解析
- 2026年商洛市商丹高級中學(xué)春季招聘參考考試題庫附答案解析
- 糧庫安全生產(chǎn)管理制度
- 網(wǎng)吧全員生產(chǎn)安全制度
- 安全生產(chǎn)值休制度
- 紡織廠安全生產(chǎn)會議制度
- 數(shù)字孿生方案
- 【低空經(jīng)濟】無人機AI巡檢系統(tǒng)設(shè)計方案
- 金融領(lǐng)域人工智能算法應(yīng)用倫理與安全評規(guī)范
- 機動車駕校安全培訓(xùn)課件
- 2025年役前訓(xùn)練考試題庫及答案
- 2024VADOD臨床實踐指南:耳鳴的管理課件
- 2025年公務(wù)員多省聯(lián)考《申論》題(陜西A卷)及參考答案
- 合歡花苷類對泌尿系感染的抗菌作用
- 合伙人股權(quán)合同協(xié)議書
- 工程施工監(jiān)理技術(shù)標
- 年終尾牙會領(lǐng)導(dǎo)講話稿
評論
0/150
提交評論