版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆湖北省武漢二中高一下數(shù)學(xué)期末考試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)A.在區(qū)間上單調(diào)遞增 B.在區(qū)間上單調(diào)遞減C.在區(qū)間上單調(diào)遞增 D.在區(qū)間上單調(diào)遞減2.已知點(diǎn)均在球上,,若三棱錐體積的最大值為,則球的體積為A. B. C.32 D.3.對(duì)于復(fù)數(shù),定義映射.若復(fù)數(shù)在映射作用下對(duì)應(yīng)復(fù)數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限4.圓x-12+y-3A.1 B.2 C.2 D.35.在正方體中,為棱的中點(diǎn),則異面直線與所成角的正切值為A. B. C. D.6.若角α的終邊經(jīng)過(guò)點(diǎn)P(-1,1A.sinα=1C.cosα=27.已知一直線經(jīng)過(guò)兩點(diǎn),,且傾斜角為,則的值為()A.-6 B.-4 C.2 D.68.已知且為常數(shù),圓,過(guò)圓內(nèi)一點(diǎn)的直線與圓相交于兩點(diǎn),當(dāng)弦最短時(shí),直線的方程為,則的值為()A.2 B.3 C.4 D.59.下圖來(lái)自古希臘數(shù)學(xué)家希波克拉底所研究的平面幾何圖形.此圖由兩個(gè)圓構(gòu)成,O為大圓圓心,線段AB為小圓直徑.△AOB的三邊所圍成的區(qū)域記為I,黑色月牙部分記為Ⅱ,兩小月牙之和(斜線部分)部分記為Ⅲ.在整個(gè)圖形中隨機(jī)取一點(diǎn),此點(diǎn)取自Ⅰ,Ⅱ,Ⅲ的概率分別記為p1,p2,p3,則()A. B. C. D.10.以下有四個(gè)說(shuō)法:①若、為互斥事件,則;②在中,,則;③和的最大公約數(shù)是;④周長(zhǎng)為的扇形,其面積的最大值為;其中說(shuō)法正確的個(gè)數(shù)是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.實(shí)數(shù)2和8的等比中項(xiàng)是__________.12.已知向量為單位向量,向量,且,則向量的夾角為_(kāi)_________.13.某球的體積與表面積的數(shù)值相等,則球的半徑是14.在平面直角坐標(biāo)系中,圓的方程為.若直線上存在一點(diǎn),使過(guò)所作的圓的兩條切線相互垂直,則實(shí)數(shù)的取值范圍是______.15.某工廠甲、乙、丙三個(gè)車(chē)間生產(chǎn)了同種產(chǎn)品,數(shù)量分別為90件,60件,30件,為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,采用層抽樣方法抽取了一個(gè)容量為的樣本進(jìn)行調(diào)查,其中從乙車(chē)間的產(chǎn)品中抽取了2件,應(yīng)從甲車(chē)間的產(chǎn)品中抽取______件.16.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)稱軸為x=1,已知當(dāng)x∈[0,1]時(shí),f(x)=121-x,則有下列結(jié)論:①2是函數(shù)fx的周期;②函數(shù)fx在1,2上遞減,在2,3上遞增;③函數(shù)f三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知函數(shù).(1)求函數(shù)的最小正周期和值域;(2)設(shè)為的三個(gè)內(nèi)角,若,,求的值.18.已知為等邊角形,.點(diǎn)滿足,,.設(shè).試用向量和表示;若,求的值.19.設(shè)數(shù)列的前項(xiàng)和為,已知.(1)求,的值;(2)求證:數(shù)列是等比數(shù)列.20.已知數(shù)列的前項(xiàng)和,且滿足:,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.21.已知A、B分別在射線CM、CN(不含端點(diǎn)C)上運(yùn)動(dòng),∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,試用θ表示ΔABC
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
由題意首先求得平移之后的函數(shù)解析式,然后確定函數(shù)的單調(diào)區(qū)間即可.【詳解】由函數(shù)圖象平移變換的性質(zhì)可知:將的圖象向右平移個(gè)單位長(zhǎng)度之后的解析式為:.則函數(shù)的單調(diào)遞增區(qū)間滿足:,即,令可得一個(gè)單調(diào)遞增區(qū)間為:.函數(shù)的單調(diào)遞減區(qū)間滿足:,即,令可得一個(gè)單調(diào)遞減區(qū)間為:,本題選擇A選項(xiàng).【點(diǎn)睛】本題主要考查三角函數(shù)的平移變換,三角函數(shù)的單調(diào)區(qū)間的判斷等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.2、A【解析】
設(shè)是的外心,則三棱錐體積最大時(shí),平面,球心在上.由此可計(jì)算球半徑.【詳解】如圖,設(shè)是的外心,則三棱錐體積最大時(shí),平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,設(shè)球半徑為,則由得,解得,∴球體積為.故選A.【點(diǎn)睛】本題考查球的體積,關(guān)鍵是確定球心位置求出球的半徑.3、A【解析】,對(duì)應(yīng)點(diǎn),在第四象限.4、C【解析】
先計(jì)算圓心到y(tǒng)軸的距離,再利用勾股定理得到弦長(zhǎng).【詳解】x-12+y-32=2圓心到y(tǒng)軸的距離d=1弦長(zhǎng)l=2r故答案選C【點(diǎn)睛】本題考查了圓的弦長(zhǎng)公式,意在考查學(xué)生的計(jì)算能力.5、C【解析】
利用正方體中,,將問(wèn)題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進(jìn)行計(jì)算即可.【詳解】在正方體中,,所以異面直線與所成角為,設(shè)正方體邊長(zhǎng)為,則由為棱的中點(diǎn),可得,所以,則.故選C.【點(diǎn)睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個(gè)平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因?yàn)橹本€夾角為銳角,所以②對(duì)應(yīng)的余弦取絕對(duì)值即為直線所成角的余弦值.6、B【解析】
利用三角函數(shù)的定義可得α的三個(gè)三角函數(shù)值后可得正確的選項(xiàng).【詳解】因?yàn)榻铅恋慕K邊經(jīng)過(guò)點(diǎn)P-1,1,故r=OP=所以sinα=【點(diǎn)睛】本題考查三角函數(shù)的定義,屬于基礎(chǔ)題.7、C【解析】
根據(jù)傾斜角為得到斜率,再根據(jù)兩點(diǎn)斜率公式計(jì)算得到答案.【詳解】一直線經(jīng)過(guò)兩點(diǎn),,則直線的斜率為.直線的傾斜角為∴,即.故答案選C.【點(diǎn)睛】本題考查了直線的斜率,意在考查學(xué)生的計(jì)算能力.8、B【解析】
由圓的方程求出圓心坐標(biāo)與半徑,結(jié)合題意,可得過(guò)圓心與點(diǎn)(1,2)的直線與直線2x﹣y=0垂直,再由斜率的關(guān)系列式求解.【詳解】圓C:化簡(jiǎn)為圓心坐標(biāo)為,半徑為.如圖,由題意可得,當(dāng)弦最短時(shí),過(guò)圓心與點(diǎn)(1,2)的直線與直線垂直.則,即a=1.故選:B.【點(diǎn)睛】本題考查直線與圓位置關(guān)系的應(yīng)用,考查數(shù)形結(jié)合的解題思想方法與數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.一般直線和圓的題很多情況下是利用數(shù)形結(jié)合來(lái)解決的,聯(lián)立的時(shí)候較少;在求圓上的點(diǎn)到直線或者定點(diǎn)的距離時(shí),一般是轉(zhuǎn)化為圓心到直線或者圓心到定點(diǎn)的距離,再加減半徑,分別得到最大值和最小值;涉及到圓的弦長(zhǎng)或者切線長(zhǎng)時(shí),經(jīng)常用到垂徑定理.9、D【解析】
設(shè)OA=1,則AB,分別求出三個(gè)區(qū)域的面積,由測(cè)度比是面積比得答案.【詳解】設(shè)OA=1,則AB,,以AB中點(diǎn)為圓心的半圓的面積為,以O(shè)為圓心的大圓面積的四分之一為,以AB為弦的大圓的劣弧所對(duì)弓形的面積為π﹣1,黑色月牙部分的面積為π﹣(π﹣1)=1,圖Ⅲ部分的面積為π﹣1.設(shè)整個(gè)圖形的面積為S,則p1,p1,p3.∴p1=p1>p3,故選D.【點(diǎn)睛】本題考查幾何概型概率的求法,考查數(shù)形結(jié)合的解題思想方法,正確求出各部分面積是關(guān)鍵,是中檔題.10、C【解析】
設(shè)、為對(duì)立事件可得出命題①的正誤;利用大邊對(duì)大角定理和余弦函數(shù)在上的單調(diào)性可判斷出命題②的正誤;列出和各自的約數(shù),可找出兩個(gè)數(shù)的最大公約數(shù),從而可判斷出命題③的正誤;設(shè)扇形的半徑為,再利用基本不等式可得出扇形面積的最大值,從而判斷出命題④的正誤.【詳解】對(duì)于命題①,若、為對(duì)立事件,則、互斥,則,命題①錯(cuò)誤;對(duì)于命題②,由大邊對(duì)大角定理知,,且,函數(shù)在上單調(diào)遞減,所以,,命題②正確;對(duì)于命題③,的約數(shù)有、、、、、,的約數(shù)有、、、、、、、,則和的最大公約數(shù)是,命題③正確;對(duì)于命題④,設(shè)扇形的半徑為,則扇形的弧長(zhǎng)為,扇形的面積為,由基本不等式得,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,所以,扇形面積的最大值為,命題④錯(cuò)誤.故選C.【點(diǎn)睛】本題考查命題真假的判斷,涉及互斥事件的概率、三角形邊角關(guān)系、公約數(shù)以及扇形面積的最值,判斷時(shí)要結(jié)合這些知識(shí)點(diǎn)的基本概念來(lái)理解,考查推理能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】所求的等比中項(xiàng)為:.12、【解析】因?yàn)?,所以,所以,所以,則.13、3【解析】試題分析:,解得.考點(diǎn):球的體積和表面積14、【解析】試題分析:記兩個(gè)切點(diǎn)為,則由于,因此四邊形是正方形,,圓標(biāo)準(zhǔn)方程為,,,于是圓心直線的距離不大于,,解得.考點(diǎn):直線和圓的位置關(guān)系.15、.【解析】
根據(jù)分層抽樣中樣本容量關(guān)系,即可求得從甲車(chē)間的產(chǎn)品中抽取數(shù)量.【詳解】根據(jù)分層抽樣為等概率抽樣,所以乙車(chē)間每個(gè)樣本被抽中的概率等于甲車(chē)間每個(gè)樣本被抽中的概率設(shè)從甲車(chē)間抽取樣本為件所以,解得所以從甲車(chē)間抽取樣本件故答案為:【點(diǎn)睛】本題考查了分層抽樣的特征及樣本數(shù)量的求法,屬于基礎(chǔ)題.16、①②④【解析】
依據(jù)題意作出函數(shù)f(x)的圖像,通過(guò)圖像可以判斷以下結(jié)論是否正確?!驹斀狻孔鞒龊瘮?shù)f(x)的圖像,由圖像可知2是函數(shù)fx的周期,函數(shù)fx在1,2上遞減,在2,3上遞增,函數(shù)當(dāng)x∈3,4時(shí),f(x)=f(x-4)=f(4-x)=故正確的結(jié)論有①②④。【點(diǎn)睛】本題主要考查函數(shù)的圖像與性質(zhì)以及數(shù)形結(jié)合思想,意在考查學(xué)生的邏輯推理能力。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)周期,值域?yàn)椋唬?).【解析】
(1)利用二倍角降冪公式與輔助角公式將函數(shù)的解析式進(jìn)行化簡(jiǎn),利用周期公式求出函數(shù)的最小正周期,并求出函數(shù)的值域;(2)先由的值,求出角的值,然后由結(jié)合同角三角函數(shù)的基本關(guān)系以及兩角和的余弦公式求出的值.【詳解】(1)∵且,∴所求周期,值域?yàn)椋唬?)∵是的三個(gè)內(nèi)角,,∴∴又,即,又∵,故,故.【點(diǎn)睛】本題考查三角函數(shù)與解三角形的綜合問(wèn)題,考查三角函數(shù)的基本性質(zhì)以及三角形中的求值問(wèn)題,求解三角函數(shù)的問(wèn)題時(shí),要將三角函數(shù)解析式進(jìn)行化簡(jiǎn),結(jié)合正余弦函數(shù)的基本性質(zhì)求解,考查分析問(wèn)題的能力和計(jì)算能力,屬于中等題.18、(1);;(2).【解析】
(1)根據(jù)向量線性運(yùn)算法則可直接求得結(jié)果;(2)根據(jù)(1)的結(jié)論將已知等式化為;根據(jù)等邊三角形邊長(zhǎng)和夾角可將等式變?yōu)殛P(guān)于的方程,解方程求得結(jié)果.【詳解】(1)(2)為等邊三角形且,即:,解得:【點(diǎn)睛】本題考查平面向量線性運(yùn)算、數(shù)量積運(yùn)算的相關(guān)知識(shí);關(guān)鍵是能夠?qū)⒌仁睫D(zhuǎn)化為已知模長(zhǎng)和夾角的向量的數(shù)量積運(yùn)算的形式,根據(jù)向量數(shù)量積的定義求得結(jié)果.19、(1),(2)見(jiàn)解析【解析】
(1)依次令,,解出即可。(2)由知當(dāng)時(shí),兩式相減,化簡(jiǎn)即可得證?!驹斀狻拷猓?)∵,∴當(dāng)時(shí),;當(dāng)時(shí),,∴;當(dāng)時(shí),,∴.(2)證明:∵,①∴當(dāng)時(shí),,②①-②得,∴,即.∴.∵.∴,∴.即是以4為首項(xiàng),2為公比的等比數(shù)列.【點(diǎn)睛】本題考查公式的應(yīng)用,屬于基礎(chǔ)題。20、(1);(2).【解析】試題分析:(1)當(dāng)時(shí),可求出,當(dāng)時(shí),利用可求出是以2為首項(xiàng),2為公比的等比數(shù)列,故而可求出其通項(xiàng)公式;(2)由裂項(xiàng)相消可求出其前項(xiàng)和.試題解析:(1)依題意:當(dāng)時(shí),有:,又,故,由①當(dāng)時(shí),有②,①-②得:化簡(jiǎn)得:,∴是以2為首項(xiàng),2為公比的等比數(shù)列,∴.(2)由(1)得:,∴∴21、(1)c=7或c=2.(1)=2sinθ+2【解析】試題分析:(Ⅰ)由題意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等變形得c1-9c+14=0,再結(jié)合c>4,可得c的值.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山東畜牧獸醫(yī)職業(yè)學(xué)院?jiǎn)握新殬I(yè)傾向性考試題庫(kù)附答案解析
- 2025年襄陽(yáng)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)帶答案解析
- 2025年劍川縣招教考試備考題庫(kù)附答案解析(奪冠)
- 電梯口應(yīng)急預(yù)案(3篇)
- 醫(yī)院醫(yī)療廢物處置設(shè)施應(yīng)急演練組織制度
- 醫(yī)院醫(yī)療廢物處置監(jiān)督制度
- 2026年春季學(xué)期XX市第四中學(xué)學(xué)生心理健康教育工作計(jì)劃及活動(dòng)安排
- 醫(yī)療設(shè)施設(shè)備管理與維護(hù)制度
- 2026年烹飪技術(shù)提高烹飪技能及菜品創(chuàng)新模擬題集202X年
- 2026年管理學(xué)基礎(chǔ)知識(shí)試題組織行為學(xué)核心概念解析
- VTE患者并發(fā)癥預(yù)防與處理
- 車(chē)輛救援合同協(xié)議書(shū)
- 貴州省遵義市匯川區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期12月期末數(shù)學(xué)試題
- UWB定位是什么協(xié)議書(shū)
- 第三終端藥品銷(xiāo)售技巧
- 甲乳外科進(jìn)修匯報(bào)
- 建設(shè)銣鹽銫鹽及其副產(chǎn)品加工項(xiàng)目可行性研究報(bào)告模板-立項(xiàng)備案
- 設(shè)備雙主人管理辦法
- GJB5714A-2023外購(gòu)產(chǎn)品質(zhì)量監(jiān)督要求
- 2025版跨境電商代銷(xiāo)合作合同范本
- 2024年麻醉指南專家共識(shí)
評(píng)論
0/150
提交評(píng)論