版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
重慶市區(qū)縣2025屆高一數學第二學期期末統(tǒng)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.運行如圖程序,若輸入的是,則輸出的結果是()A.3 B.9 C.0 D.2.下列賦值語句正確的是()A.S=S+i2 B.A=-AC.x=2x+1 D.P=3.若數列滿足,,則()A. B. C.18 D.204.半徑為的半圓卷成一個圓錐,它的體積是()A. B. C. D.5.若圓心坐標為的圓,被直線截得的弦長為,則這個圓的方程是()A. B.C. D.6.某學生用隨機模擬的方法推算圓周率的近似值,在邊長為的正方形內有一內切圓,向正方形內隨機投入粒芝麻,(假定這些芝麻全部落入該正方形中)發(fā)現(xiàn)有粒芝麻落入圓內,則該學生得到圓周率的近似值為()A. B. C. D.7.如圖所示,在一個長、寬、高分別為2、3、4的密封的長方體裝置中放一個單位正方體禮盒,現(xiàn)以點D為坐標原點,、、分別為x、y、z軸建立空間直角坐標系,則正確的是()A.的坐標為 B.的坐標為C.的長為 D.的長為8.在三棱柱中,平面,,,,E,F(xiàn)分別是,上的點,則三棱錐的體積為()A.6 B.12 C.24 D.369.奇函數在上單調遞減,且,則不等式的解集是().A. B.C. D.10.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒,若一名行人來到該路口遇到紅燈,則至少需要等待15秒才出現(xiàn)綠燈的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,若與共線,則實數________.12.用數學歸納法證明“”時,由不等式成立,推證時,則不等式左邊增加的項數共__項13.已知函數f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分圖象如圖所示,則f()=________.14.已知三點、、共線,則a=_______.15.在行列式中,元素的代數余子式的值是________.16.在△ABC中,a、b、c分別為角A、B、C的對邊,若b·cosC=c·cosB,且cosA=,則cosB的值為_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知為等差數列,且(Ⅰ)求數列的通項公式;(Ⅱ)記的前項和為,若成等比數列,求正整數的值.18.解下列方程(1);(2);19.如圖所示,在直角坐標系中,點,,點P,Q在單位圓上,以x軸正半軸為始邊,以射線為終邊的角為,以射線為終邊的角為,滿足.(1)若,求(2)當點P在單位圓上運動時,求函數的解析式,并求的最大值.20.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.(Ⅰ)證明:BC1//平面A1CD;(Ⅱ)設AA1=AC=CB=2,AB=2,求三棱錐C一A1DE的體積.21.在如圖所示的直角梯形中,,求該梯形繞上底邊所在直線旋轉一周所形成幾何體的表面積和體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】分析:首先根據框圖中的條件,判斷-2與1的大小,從而確定出代入哪個解析式,從而求得最后的結果,得到輸出的值.詳解:首先判斷成立,代入中,得到,從而輸出的結果為9,故選B.點睛:該題考查的是有關程序框圖的問題,在解題的過程中,需要注意的是要明確自變量的范圍,對應的函數解析式應該代入哪個,從而求得最后的結果,屬于簡單題目.2、B【解析】在程序語句中乘方要用“^”表示,所以A項不正確;乘號“*”不能省略,所以C項不正確;D項中應用SQR(x)表示,所以D項不正確;B選項是將變量A的相反數賦給變量A,則B項正確.選B.3、A【解析】
首先根據題意得到:是以首項為,公差為的等差數列.再計算即可.【詳解】因為,所以是以首項為,公差為的等差數列.,.故選:A【點睛】本題主要考查等差數列的定義,熟練掌握等差數列的表達式是解題的關鍵,屬于簡單題.4、A【解析】
根據圓錐的底面圓周長等于半圓弧長可計算出圓錐底面圓半徑,由勾股定理可計算出圓錐的高,再利用錐體體積公式可計算出圓錐的體積.【詳解】設圓錐的底面圓半徑為,高為,則圓錐底面圓周長為,得,,所以,圓錐的體積為,故選:A.【點睛】本題考查圓錐體積的計算,解題的關鍵就是要計算出圓錐底面圓的半徑和高,解題時要從已知條件列等式計算,并分析出一些幾何等量關系,考查空間想象能力與計算能力,屬于中等題.5、B【解析】
設出圓的方程,求出圓心到直線的距離,利用圓心到直線的距離、半徑和半弦長滿足勾股定理,求得圓的半徑,即可求得圓的方程,得到答案.【詳解】由題意,設圓的方程為,則圓心到直線的距離為,又由被直線截得的弦長為,則,所以所求圓的方程為,故選B.【點睛】本題主要考查了圓的方程的求解,以及直線與圓的弦長的應用,其中解答中熟記直線與圓的位置關系,合理利用圓心到直線的距離、半徑和半弦長滿足勾股定理是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6、B【解析】
由落入圓內的芝麻數占落入正方形區(qū)域內的芝麻數的比例等于圓的面積與正方形的面積比相等,列等式求出的近似值.【詳解】邊長為的正方形內有一內切圓的半徑為,圓的面積為,正方形的面積為,由幾何概型的概率公式可得,得,因此,該學生得到圓周率的近似值為,故選:B.【點睛】本題考查利用隨機模擬思想求圓周率的近似值,解題的關鍵就是利用概率相等結合幾何概型的概率公式列等式求解,考查計算能力,屬于基礎題.7、D【解析】
根據坐標系寫出各點的坐標分析即可.【詳解】由所建坐標系可得:,,,.故選:D.【點睛】本題考查空間直角坐標系的應用,考查空間中距離的求法,考查計算能力,屬于基礎題.8、B【解析】
等體積法:.求出的面積和F到平面的距離,代入公式即可.【詳解】由題意可得,的面積為,因為,,平面ABC,所以點C到平面的距離為,即點F到平面的距離為4,則三棱錐的體積為.故三棱錐的體積為12.【點睛】此題考察了三棱錐體積的等體積法,通過變化頂點和底面進行轉化,屬于較易題目.9、A【解析】
因為函數式奇函數,在上單調遞減,根據奇函數的性質得到在上函數仍是減函數,再根據可畫出函數在上的圖像,根據對稱性畫出在上的圖像.根據圖像得到的解集是:.故選A.10、B【解析】試題分析:因為紅燈持續(xù)時間為40秒,所以這名行人至少需要等待15秒才出現(xiàn)綠燈的概率為,故選B.【考點】幾何概型【名師點睛】對于幾何概型的概率公式中的“測度”要有正確的認識,它只與大小有關,而與形狀和位置無關,在解題時,要掌握“測度”為長度、面積、體積、角度等常見的幾何概型的求解方法.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據平面向量的共線定理與坐標表示,列方程求出x的值.【詳解】向量(3,﹣1),(x,2),若與共線,則3×2﹣(﹣1)?x=0,解得x=﹣1.故答案為﹣1.【點睛】本題考查了平面向量的共線定理與坐標表示的應用問題,是基礎題.12、【解析】
由題意有:由不等式成立,推證時,則不等式左邊增加的項數共項,得解.【詳解】解:當時,不等式左邊為,當時,不等式左邊為,則由不等式成立,推證時,則不等式左邊增加的項數共項,故答案為:.【點睛】本題考查了數學歸納法,重點考查了運算能力,屬基礎題.13、3【解析】
根據圖象看出周期、特殊點的函數值,解出待定系數即可解得.【詳解】由圖可知:解得又因:所以又因:即所以又所以又因:所以即所以所以所以故得解.【點睛】本題考查由圖象求正切函數的解析式,屬于中檔題。14、【解析】
由三點、、共線,則有,再利用向量共線的坐標運算即可得解.【詳解】解:由、、,則,,又三點、、共線,則,則,解得:,故答案為:.【點睛】本題考查了向量共線的坐標運算,屬基礎題.15、【解析】
根據余子式的定義,要求的代數余子式的值,這個元素在三階行列式中的位置是第一行第二列,那么化去第一行第二列得到的代數余子式,解出即可.【詳解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代數余子式為:解這個余子式的值為,故元素的代數余子式的值是.故答案為:【點睛】考查學生會求行列式中元素的代數余子式,行列式的計算方法,屬于基礎題.16、【解析】
利用余弦定理表示出與,代入已知等式中,整理得到,再利用余弦定理表示出,將及的值代入用表示出,將表示出的與代入中計算,即可求出值.【詳解】由題意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,則,故答案為.【點睛】本題考查了解三角形的綜合應用,高考中經常將三角變換與解三角形知識綜合起來命題,如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理實現(xiàn)邊角互化;以上特征都不明顯時,則要考慮兩個定理都有可能用到.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、:(Ⅰ)(Ⅱ)【解析】試題分析:(Ⅰ)設等差數列{an}的公差等于d,則由題意可得,解得a1=1,d=1,從而得到{an}的通項公式.(Ⅱ)由(Ⅰ)可得{an}的前n項和為Sn==n(n+1),再由=a1Sk+1,求得正整數k的值.解:(Ⅰ)設等差數列{an}的公差等于d,則由題意可得,解得a1=1,d=1.∴{an}的通項公式an=1+(n﹣1)1=1n.(Ⅱ)由(Ⅰ)可得{an}的前n項和為Sn==n(n+1).∵若a1,ak,Sk+1成等比數列,∴=a1Sk+1,∴4k1=1(k+1)(k+3),k="2"或k=﹣1(舍去),故k=2.考點:等比數列的性質;等差數列的通項公式.18、(1)或;(2);【解析】
(1)由,得,解方程即可.(2)由已知得到,解得即可.【詳解】(1),,或,或.(2),,解得.【點睛】本題考查了指數型、對數型方程,考查了指數、對數的運算,屬于基礎題.19、(1)(2),最大值.【解析】
(1)由角的定義求出,再由數量積定義計算;(2)由三角函數定義寫出坐標,求出的坐標,計算出,利用兩角和的正弦公式可化函數為一個三角函數形式,由正弦函數性質可求得最大值.【詳解】(1)由圖可知,,..(2)由題意可知,.因為,,所以.所以,.所以.當()時,取得最大值.【點睛】本題考查任意角的定義,平面向量的數量積的坐標運算,考查兩角和的正弦公式、誘導公式及正弦函數的性質.本題解題關鍵是掌握三角函數的定義,表示出坐標.20、(Ⅰ)見解析(Ⅱ)【解析】試題分析:(Ⅰ)連接AC1交A1C于點F,則DF為三角形ABC1的中位線,故DF∥BC1.再根據直線和平面平行的判定定理證得BC1∥平面A1CD.(Ⅱ)由題意可得此直三棱柱的底面ABC為等腰直角三角形,由D為AB的中點可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.進而求得S△A1DE的值,再根據三棱錐C-A1DE的體積為?S△A1DE?CD,運算求得結果試題解析:(1)證明:連結AC1交A1C于點F,則F為AC1中點又D是AB中點,連結DF,則BC1∥DF.3分因為DF?平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因為ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D為AB的中點,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州軟件學院2025-2026學年專任教師招聘備考題庫及完整答案詳解1套
- 滄州幼兒師范高等??茖W校2026年度高層次人才選聘的備考題庫及一套參考答案詳解
- 2025年湖南鹽業(yè)集團有限公司所屬企業(yè)公開招聘18人備考題庫附答案詳解
- 2025年武漢紡織大學第二批人才引進18人備考題庫及1套完整答案詳解
- 2025年浙江中醫(yī)藥大學臨床醫(yī)學院及直屬附屬醫(yī)院公開招聘人員備考題庫參考答案詳解
- 2025年鄂爾多斯市達拉特旗公開引進教師118人備考題庫附答案詳解
- 2025年明港消防救援大隊政府專職消防救援人員招聘備考題庫及一套參考答案詳解
- 2025年渝北區(qū)悅來生態(tài)城幼兒園招聘啟備考題庫及參考答案詳解
- 電氣值班員工作質量評估與考核標準
- 數據質量考試題庫與測試大綱
- 華為HCIA存儲H13-611認證培訓考試題庫(匯總)
- 浙江省建設工程施工現(xiàn)場安全管理臺賬實例
- 社會主義發(fā)展史知到章節(jié)答案智慧樹2023年齊魯師范學院
- 美國史智慧樹知到答案章節(jié)測試2023年東北師范大學
- GB/T 15924-2010錫礦石化學分析方法錫量測定
- GB/T 14525-2010波紋金屬軟管通用技術條件
- GB/T 11343-2008無損檢測接觸式超聲斜射檢測方法
- GB/T 1040.3-2006塑料拉伸性能的測定第3部分:薄膜和薄片的試驗條件
- 教師晉級專業(yè)知識和能力證明材料
- 申報專業(yè)技術職稱課件-
- 排隊叫號系統(tǒng)施工技術方案
評論
0/150
提交評論