版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆河南省安陽市滑縣高一數(shù)學(xué)第二學(xué)期期末綜合測試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在ΔABC中,角A,B,C所對的邊分別為a,b,c,若A=π3,B=π4,A.23 B.2 C.3 D.2.定義運(yùn)算,設(shè),若,,,則的值域?yàn)椋ǎ〢. B. C. D.3.已知是兩條不同的直線,是兩個不同的平面,則下列命題正確的是A.,則B.,則C.,則D.,則4.如圖所示,AB是半圓O的直徑,VA垂直于半圓O所在的平面,點(diǎn)C是圓周上不同于A,B的任意一點(diǎn),M,N分別為VA,VC的中點(diǎn),則下列結(jié)論正確的是()A.MN//AB B.平面VAC⊥平面VBCC.MN與BC所成的角為45° D.OC⊥平面VAC5.如圖,在四棱錐中,底面為平行四邊形,,,,,且平面,為的中點(diǎn),則下列結(jié)論錯誤的是()A. B.C.平面平面 D.三棱錐的體積為6.記動點(diǎn)P是棱長為1的正方體的對角線上一點(diǎn),記.當(dāng)為鈍角時,則的取值范圍為()A. B. C. D.7.已知向量,且,則m=()A.?8 B.?6C.6 D.88.如圖,若長方體的六個面中存在三個面的面積分別是2,3,6,則該長方體中線段的長是()A. B. C.28 D.9.甲、乙、丙三人隨機(jī)排成一排,乙站在中間的概率是()A. B. C. D.10.設(shè)x、y滿足約束條件,則z=2x﹣y的最大值為()A.0 B.0.5 C.1 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.九連環(huán)是我國從古至今廣泛流傳的一種益智游戲,它用九個圓環(huán)相連成串,以解開為勝.據(jù)明代楊慎《丹鉛總錄》記載:“兩環(huán)互相貫為一,得其關(guān)捩,解之為二,又合面為一”.在某種玩法中,用表示解下個圓環(huán)所需的移動最少次數(shù),滿足,且,則解下4個環(huán)所需的最少移動次數(shù)為_____.12.已知數(shù)列滿足:,,則_____.13.據(jù)監(jiān)測,在海濱某城市附近的海面有一臺風(fēng),臺風(fēng)中心位于城市的南偏東30°方向,距離城市的海面處,并以的速度向北偏西60°方向移動(如圖示).如果臺風(fēng)侵襲范圍為圓形區(qū)域,半徑,臺風(fēng)移動的方向與速度不變,那么該城市受臺風(fēng)侵襲的時長為_______小時.14.已知正三棱錐的底面邊長為6,所在直線與底面所成角為60°,則該三棱錐的側(cè)面積為_______.15.輾轉(zhuǎn)相除法,又名歐幾里得算法,是求兩個正整數(shù)之最大公約數(shù)的算法,它是已知最古老的算法之一,在中國則可以追溯至漢朝時期出現(xiàn)的《九章算術(shù)》.下圖中的程序框圖所描述的算法就是輾轉(zhuǎn)相除法.若輸入、的值分別為、,則執(zhí)行程序后輸出的的值為______.16.在,若,,,則__________________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18.已知數(shù)列的前項(xiàng)和為,點(diǎn)在直線上.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),若數(shù)列的前項(xiàng)和為,求證:.19.已知、、是同一平面內(nèi)的三個向量,其中=(1,2),=(﹣2,3),=(﹣2,m)(1)若⊥(+),求||;(2)若k+與2﹣共線,求k的值.20.已知函數(shù).(1)證明函數(shù)在定義域上單調(diào)遞增;(2)求函數(shù)的值域;(3)令,討論函數(shù)零點(diǎn)的個數(shù).21.如圖,在直四棱柱中,底面為菱形,為中點(diǎn).(1)求證:平面;(2)求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
利用正弦定理asinA=【詳解】在ΔABC中,由正弦定理得asinA=故選:A.【點(diǎn)睛】本題考查利用正弦定理求邊,要記得正弦定理所適用的基本類型,考查計算能力,屬于基礎(chǔ)題。2、C【解析】
由題意,由于與都是周期函數(shù),且最小正周期都是,故只須在一個周期上考慮函數(shù)的值域即可,分別畫出與的圖象,如圖所示,觀察圖象可得:的值域?yàn)?,故選C.3、D【解析】
根據(jù)空間中直線與平面的位置關(guān)系的相關(guān)定理依次判斷各個選項(xiàng)即可.【詳解】兩平行平面內(nèi)的直線的位置關(guān)系為:平行或異面,可知錯誤;且,此時或,可知錯誤;,,,此時或,可知錯誤;兩平行線中一條垂直于一個平面,則另一條必垂直于該平面,正確.本題正確選項(xiàng):【點(diǎn)睛】本題考查空間中直線與平面、平面與平面位置關(guān)系的判定,考查學(xué)生對于定理的掌握程度,屬于基礎(chǔ)題.4、B【解析】
對每一個選項(xiàng)逐一分析判斷得解.【詳解】A.∵M(jìn),N分別為VA,VC的中點(diǎn),∴MN//AC,又AC⊥BC,∴MN與BC所成的角為90°,故C不正確;∵M(jìn)N//AC,AC∩AB=A,∴MN//AB不成立,故A不正確.B.∵AB是⊙O的直徑,點(diǎn)C是圓周上不同于A,B的任意一點(diǎn),∴AC⊥BC,∵VA垂直⊙O所在的平面,BC?⊙O所在的平面,∴VA⊥BC,又AC∩VA=A,∴BC⊥平面VAC,又BC?平面VBC,∴平面VAC⊥平面VBC,故B正確;C.∵AB是⊙O的直徑,點(diǎn)C是圓周上不同于A,B的任意一點(diǎn),∴AC⊥BC,又A、B、C、O共面,∴OC與AC不垂直,∴OC⊥平面VAC不成立,故B不正確;∵M(jìn),N分別為VA,VC的中點(diǎn),∴MN//AC,又AC⊥BC,∴MN與BC所成的角為90°,故C不正確;D.∵AB是⊙O的直徑,點(diǎn)C是圓周上不同于A,B的任意一點(diǎn),∴AC⊥BC,又A、B、C、O共面,∴OC與AC不垂直,∴OC⊥平面VAC不成立,故D不正確.故選B.【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,考查異面直線所成的角的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.5、B【解析】
根據(jù)余弦定理可求得,利用勾股定理證得,由線面垂直性質(zhì)可知,利用線面垂直判定定理可得平面,利用線面垂直性質(zhì)可知正確;假設(shè)正確,由和假設(shè)可證得平面,由線面垂直性質(zhì)可知,從而得到,顯然錯誤,則錯誤;由面面垂直判定定理可證得正確;由可求得三棱錐體積,知正確,從而可得選項(xiàng).【詳解】,,平面,平面又平面,平面平面,則正確;若,又且平面,平面平面又,與矛盾,假設(shè)錯誤,則錯誤;平面,平面又平面平面平面,則正確;為中點(diǎn),,則正確本題正確選項(xiàng):【點(diǎn)睛】本題考查立體幾何中相關(guān)命題的判斷,涉及到線面垂直的判定與性質(zhì)定理的應(yīng)用、面面垂直關(guān)系的判定、三棱錐體積的求解等知識,是對立體幾何部分的定理的綜合考查,關(guān)鍵是能夠準(zhǔn)確判定出圖形中的線面垂直關(guān)系.6、B【解析】
建立空間直角坐標(biāo)系,利用∠APC不是平角,可得∠APC為鈍角等價于cos∠APC<0,即
,從而可求λ的取值范圍.【詳解】
由題設(shè),建立如圖所示的空間直角坐標(biāo)系D-xyz,
則有A(1,0,0),B(1,1,0),C(0,1,0),(0,0,1)
∴
=(1,1,-1),∴
=(λ,λ,-λ),
∴
=
+
=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1)
=
+
=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1)
顯然∠APC不是平角,所以∠APC為鈍角等價于cos∠APC<0
∴
∴(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)(λ-1)=(λ-1)(3λ-1)<0,得
<λ<1
因此,λ的取值范圍是(
,1),故選B.
點(diǎn)評:本題考查了用空間向量求直線間的夾角,一元二次不等式的解法,屬于中檔題.7、D【解析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.8、A【解析】
由長方體的三個面對面積先求出同一點(diǎn)出發(fā)的三條棱長,即可求出結(jié)果.【詳解】設(shè)長方體從一個頂點(diǎn)出發(fā)的三條棱的長分別為,且,,,則,,,所以長方體中線段的長等于.【點(diǎn)睛】本題主要考查簡單幾何體的結(jié)構(gòu)特征,屬于基礎(chǔ)題型.9、B【解析】
先求出甲、乙、丙三人隨機(jī)排成一排的基本事件的個數(shù),再求出乙站在中間的基本事件的個數(shù),再求概率即可.【詳解】解:三個人排成一排的所有情況有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙乙甲,丙甲乙共6種,乙在中間有2種,所以乙在中間的概率為,故選B.【點(diǎn)睛】本題考查了古典概型,屬基礎(chǔ)題.10、C【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖,聯(lián)立,解得A(2,3),化目標(biāo)函數(shù)z=2x﹣y為y=2x﹣z,由圖可知,當(dāng)直線y=2x﹣z過A時,直線在y軸上的截距最小,z有最大值為2×2﹣3=1.故選:C.【點(diǎn)評】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、7【解析】
利用的通項(xiàng)公式,依次求出,從而得到,即可得到答案。【詳解】由于表示解下個圓環(huán)所需的移動最少次數(shù),滿足,且所以,,故,所以解下4個環(huán)所需的最少移動次數(shù)為7故答案為7.【點(diǎn)睛】本題考查數(shù)列的遞推公式,屬于基礎(chǔ)題。12、【解析】
從開始,直接代入公式計算,可得的值.【詳解】解:由題意得:,,,,故答案為:.【點(diǎn)睛】本題主要考查數(shù)列的遞推公式及數(shù)列的性質(zhì),相對簡單.13、1【解析】
設(shè)臺風(fēng)移動M處的時間為th,則|PM|=20t,利用余弦定理求得AM,而該城市受臺風(fēng)侵襲等價于AM≤60,解此不等式可得.【詳解】如圖:設(shè)臺風(fēng)移動M處的時間為th,則|PM|=20t,依題意可得,在三角形APM中,由余弦定理可得:依題意該城市受臺風(fēng)侵襲等價于AM≤60,即AM2≤602,化簡得:,所以該城市受臺風(fēng)侵襲的時間為6﹣1=1小時.故答案為:1.【點(diǎn)睛】本題考查了余弦定理的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.14、【解析】
畫出圖形,過P做底面的垂線,垂足O落在底面正三角形中心,即,因?yàn)?,即可求?所以.【詳解】作于,因?yàn)闉檎忮F,所以,為中點(diǎn),連結(jié),則,過作⊥平面,則點(diǎn)為正三角形的中心,點(diǎn)在上,所以,,正三角形的邊長為6,則,,,斜高,三棱錐的側(cè)面積為:【點(diǎn)睛】此題考查正三棱錐,即底面為正三角形,側(cè)面為等腰三角形的三棱錐,正四面體為四個面都是正三角形,畫出圖像,屬于簡單的立體幾何題目.15、【解析】
程序的運(yùn)行功能是求,的最大公約數(shù),根據(jù)輾轉(zhuǎn)相除法可得的值.【詳解】由程序語言知:算法的功能是利用輾轉(zhuǎn)相除法求、的最大公約數(shù),當(dāng)輸入的,,;,,可得輸出的.【點(diǎn)睛】本題主要考查了輾轉(zhuǎn)相除法的程序框圖的理解,掌握輾轉(zhuǎn)相除法的操作流程是解題關(guān)鍵.16、【解析】
由,故用二倍角公式算出,再用余弦定理算得即可.【詳解】,又,,又,代入得,所以.故答案為【點(diǎn)睛】本題主要考查二倍角公式與余弦定理,屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用條件求數(shù)列的首項(xiàng)與公比,確定所求.(2)將分組,,再利用等比數(shù)列前n項(xiàng)和公式求和【詳解】解:(1)設(shè)等比數(shù)列的公比為,所以,由,所以,則;(2),所以數(shù)列的前項(xiàng)和,則數(shù)列的前項(xiàng)和.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng),分組求和法,考查計算能力,屬于中檔題.18、(1)(2)見解析【解析】
(1)先利用時,由求出的值,再令,由,得出,將兩式相減得出數(shù)列為等比數(shù)列,得出該數(shù)列的公比,可求出;(2)利用對數(shù)的運(yùn)算性質(zhì)以及等差數(shù)列的求和公式得出,并將裂項(xiàng)為,利用裂項(xiàng)法求出,于此可證明出所證不等式成立.【詳解】(1)由題可得.當(dāng)時,,即.由題設(shè),,兩式相減得.所以是以2為首項(xiàng),2為公比的等比數(shù)列,故.(2),則,所以因?yàn)?,所以,即證.【點(diǎn)睛】本題考查利用求通項(xiàng),以及裂項(xiàng)法求和,利用求通項(xiàng)的原則是,另外在利用裂項(xiàng)法求和時要注意裂項(xiàng)法求和法所適用數(shù)列通項(xiàng)的基本類型,熟悉裂項(xiàng)法求和的基本步驟,都是??碱}型,屬于中等題.19、(1);(2)-2【解析】
(1)根據(jù)向量的坐標(biāo)的運(yùn)算法則和向量垂直的條件,以及模的定義即可求出;(2)根據(jù)向量共線的條件即可求出.【詳解】(1)∵,∴,,∴m=﹣1∴∴=(2)由已知:,,因?yàn)?,所以:k﹣2=4(2k+3),∴k=﹣2【點(diǎn)睛】本題考查了向量的坐標(biāo)運(yùn)算以及向量的垂直和平行,屬于基礎(chǔ)題.20、(1)證明見解析;(2);(3)當(dāng)時,沒有零點(diǎn);當(dāng)時,有且僅有一個零點(diǎn)【解析】
(1)求出函數(shù)定義域后直接用定義法即可證明;(2)由題意得,對兩邊同時平方得,求出的取值范圍即可得解;(3)轉(zhuǎn)化條件得,令,利用二次函數(shù)的性質(zhì)分類討論即可得解.【詳解】(1)證明:令,解得,故函數(shù)的定義域?yàn)榱?,由,可得,所以,,故即,所以函?shù)在定義域上單調(diào)遞增.(2)由,,故,,當(dāng)時,,有,可得:,故,由,可得,故函數(shù)的值域?yàn)?,?)由(2)知,則,令,則,令,①當(dāng)時,,此時函數(shù)沒有零點(diǎn),故函數(shù)也沒有零點(diǎn);②當(dāng)時,二次函數(shù)的對稱軸為,則函數(shù)在區(qū)間單調(diào)遞增,而,,故函數(shù)有一個零點(diǎn),又由函數(shù)單調(diào)遞增,可得函數(shù)也只有一個零點(diǎn);③當(dāng)時,,二次函數(shù)開口向下,對稱軸,又,,此時函數(shù)沒有零點(diǎn),故函數(shù)也沒有零點(diǎn).綜上,當(dāng)時,函數(shù)沒
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年農(nóng)業(yè)文化遺產(chǎn)活化利用指南
- 煙草制品經(jīng)營風(fēng)險防控管理手冊
- 2026青龍湖(河北)產(chǎn)業(yè)發(fā)展集團(tuán)有限公司招聘15人備考題庫及一套參考答案詳解
- 2026年原型設(shè)計工具高階應(yīng)用培訓(xùn)
- 計算機(jī)行業(yè)年度策略:AI應(yīng)用加快全球格局重塑中
- 職業(yè)健康風(fēng)險評估與員工職業(yè)發(fā)展動態(tài)調(diào)整機(jī)制
- 職業(yè)健康促進(jìn)與職業(yè)健康效益優(yōu)化
- 職業(yè)健康與心理健康的整合干預(yù)策略-2
- 陽江2025年廣東陽江陽西縣新墟鎮(zhèn)招聘合同制禁毒工作人員筆試歷年參考題庫附帶答案詳解
- 邢臺2025年河北邢臺市襄都區(qū)招聘中小學(xué)幼兒園教師75人筆試歷年參考題庫附帶答案詳解
- 云南省玉溪市2025-2026學(xué)年八年級上學(xué)期1月期末物理試題(原卷版+解析版)
- 2026年哈爾濱通河縣第一批公益性崗位招聘62人考試參考試題及答案解析
- 就業(yè)協(xié)議書解約函模板
- 研發(fā)部門員工加班管理細(xì)則
- 鋼結(jié)構(gòu)橋梁施工監(jiān)測方案
- 2025人教pep版三年級英語上冊字帖
- 《5G移動通信》課件-項(xiàng)目六 5G網(wǎng)絡(luò)中的人工智能技術(shù)
- 2025江蘇蘇州高新區(qū)獅山商務(wù)創(chuàng)新區(qū)下屬國有企業(yè)招聘9人筆試題庫及答案詳解
- 教培機(jī)構(gòu)年終工作總結(jié)
- 2025年秋季青島版三年級數(shù)學(xué)上冊求比一個數(shù)的幾倍多(少)幾的數(shù)教學(xué)課件
- 人才技術(shù)入股公司股權(quán)分配協(xié)議書
評論
0/150
提交評論