浙江諸暨中學2025屆數(shù)學高一下期末檢測試題含解析_第1頁
浙江諸暨中學2025屆數(shù)學高一下期末檢測試題含解析_第2頁
浙江諸暨中學2025屆數(shù)學高一下期末檢測試題含解析_第3頁
浙江諸暨中學2025屆數(shù)學高一下期末檢測試題含解析_第4頁
浙江諸暨中學2025屆數(shù)學高一下期末檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江諸暨中學2025屆數(shù)學高一下期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,角A、B、C的對邊分別為a、b、c,若,則角()A. B. C. D.2.已知為三條不同直線,為三個不同平面,則下列判斷正確的是()A.若,,,,則B.若,,則C.若,,,則D.若,,,則3.若,均為銳角,且,,則等于()A. B. C. D.4.sincos+cos20°sin40°的值等于A. B. C. D.5.石臼是人類以各種石材制造的,用以砸、搗、研磨藥材、食品等的生產(chǎn)工具,是由長方體挖去半球所得幾何體,若某石臼的三視圖如圖所示(單位:dm),則其表面積(單位:dm2)為()A.132+8π B.168+4π C.132+12π D.168+16π6.由小到大排列的一組數(shù)據(jù),,,,,其中每個數(shù)據(jù)都小于,那么對于樣本,,,,,的中位數(shù)可以表示為()A. B. C. D.7.執(zhí)行如下圖所示的程序框圖,若輸出的,則輸入的的值為()A. B. C. D.8.已知直線的方程為,,則直線的傾斜角范圍()A. B.C. D.9.下列結(jié)論正確的是()A. B.若,則C.當且時, D.10.在△中,角,,所對的邊分別為,,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的值域是______.12.已知,且,則________.13.若角的終邊經(jīng)過點,則___________.14.設(shè)數(shù)列的前項和為滿足:,則_________.15.已知實數(shù)滿足,則的最大值為_______.16.已知,則的值為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,某小區(qū)有一塊半徑為米的半圓形空地,開發(fā)商計劃在該空地上征地建一個矩形的花壇和一個等腰三角形的水池EDC,其中為圓心,在圓的直徑上,在半圓周上.(1)設(shè),征地面積為,求的表達式,并寫出定義域;(2)當滿足取得最大值時,建造效果最美觀.試求的最大值,以及相應(yīng)角的值.18.已知.(1)求;(2)求的值.19.在中,內(nèi)角A,B,C所對的邊分別為a,b,c;已知.(1)求角B的大小;(2)若外接圓的半徑為2,求面積的最大值.20.某市為增強市民的環(huán)境保護意識,面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取名按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.(1)若從第,,組中用分層抽樣的方法抽取名志愿者參廣場的宣傳活動,應(yīng)從第,,組各抽取多少名志愿者?(2)在(1)的條件下,該市決定在這名志愿者中隨機抽取名志愿者介紹宣傳經(jīng)驗,求第組志愿者有被抽中的概率.21.在等差數(shù)列中,已知,.(1)求數(shù)列的前項和的最大值;(2)若,求數(shù)列前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

利用余弦定理求三角形的一個內(nèi)角的余弦值,可得的值,得到答案.【詳解】在中,因為,即,利用余弦定理可得,又由,所以,故選C.【點睛】本題主要考查了余弦定理的應(yīng)用,其中解答中根據(jù)題設(shè)條件,合理利用余弦定理求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、C【解析】

根據(jù)線線位置關(guān)系,線面位置關(guān)系,以及面面位置關(guān)系,逐項判斷,即可得出結(jié)果.【詳解】A選項,當時,由,可得,此時由,可得或或與相交;所以A錯誤;B選項,若,,則,或相交,或異面;所以B錯誤;C選項,若,,,根據(jù)線面平行的性質(zhì),可得,所以C正確;D選項,若,,則或,又,則,或相交,或異面;所以D錯誤;故選C【點睛】本題主要考查線面,面面有關(guān)命題的判定,熟記空間中點線面位置關(guān)系即可,屬于常考題型.3、B【解析】

先利用兩角和的余弦公式求出,通過條件可求得,進而可得.【詳解】解:,因為,則,故,故選:B.【點睛】本題考查兩角和的正切公式,注意角的范圍的確定,是基礎(chǔ)題.4、B【解析】由題可得,.故選B.5、B【解析】

利用三視圖的直觀圖,畫出幾何體的直觀圖,然后求解表面積即可.【詳解】幾何體的直觀圖如圖:幾何體的表面積為:6×6×2+4×6×4﹣4π+2π×22=168+4π.故選:B.【點評】本題考查三視圖及求解幾何體的表面積,判斷幾何體的形狀是解題的關(guān)鍵.6、C【解析】

根據(jù)不等式的基本性質(zhì),對樣本數(shù)據(jù)按從小到大排列為,取中間的平均數(shù).【詳解】,,則該組樣本的中位數(shù)為中間兩數(shù)的平均數(shù),即.【點睛】考查基本不等式性質(zhì)運用和中位數(shù)的定義.7、D【解析】由題意,當輸入,則;;;,終止循環(huán),則輸出,所以,故選D.8、B【解析】

利用直線斜率與傾斜角的關(guān)系即可求解.【詳解】由直線的方程為,所以,即直線的斜率,由.所以,又直線的傾斜角的取值范圍為,由正切函數(shù)的性質(zhì)可得:直線的傾斜角為.故選:B【點睛】本題考查了直線的斜率與傾斜角之間的關(guān)系,同時考查了正弦函數(shù)的值域以及正切函數(shù)的性質(zhì),屬于基礎(chǔ)題.9、D【解析】

利用不等式的性質(zhì)進行分析,對錯誤的命題可以舉反例說明.【詳解】當時,A不正確;,則,B錯誤;當時,,,C錯誤;由不等式的性質(zhì)正確.故選:D.【點睛】本題考查不等式的性質(zhì),掌握不等式性質(zhì)是解題關(guān)鍵.可通過反例說明命題錯誤.10、C【解析】

由正弦定理分別檢驗問題的充分性和必要性,可得答案.【詳解】解:充分性:在△中,由,可得,所以,故充分性成立;必要性:在△中,由及正弦定理,可得,可得,,故,必要性成立;故可得:在△中,角,,所對的邊分別為,,,則“”是“”的充分必要條件,故選C.【點睛】本題主要考查充分條件、必要條件的判斷,相對不難,注意正弦定理的靈活運用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

將函數(shù)化為的形式,再計算值域?!驹斀狻恳驗樗浴军c睛】本題考查三角函數(shù)的值域,屬于基礎(chǔ)題。12、【解析】試題分析:由得:解方程組:得:或因為,所以所以不合題意,舍去所以,所以,答案應(yīng)填:.考點:同角三角函數(shù)的基本關(guān)系和兩角差的三角函數(shù)公式.13、3【解析】

直接根據(jù)任意角三角函數(shù)的定義求解,再利用兩角和的正切展開代入求解即可【詳解】由任意角三角函數(shù)的定義可得:.則故答案為3【點睛】本題主要考查了任意角三角函數(shù)的定義和兩角和的正切計算,熟記公式準確計算是關(guān)鍵,屬于基礎(chǔ)題.14、【解析】

利用,求得關(guān)于的遞推關(guān)系式,利用配湊法證得是等比數(shù)列,由此求得數(shù)列的通項公式,進而求得的表達式,從而求得的值.【詳解】當時,.由于,而,故,故答案為:.【點睛】本小題主要考查配湊法求數(shù)列的通項公式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.15、【解析】

根據(jù)約束條件,畫出可行域,目標函數(shù)可以看成是可行域內(nèi)的點和的連線的斜率,從而找到最大值時的最優(yōu)解,得到最大值.【詳解】根據(jù)約束條件可以畫出可行域,如下圖陰影部分所示,目標函數(shù)可以看成是可行域內(nèi)的點和的連線的斜率,因此可得,當在點時,斜率最大聯(lián)立,得即所以此時斜率為,故答案為.【點睛】本題考查簡單線性規(guī)劃問題,求目標函數(shù)為分式的形式,關(guān)鍵是要對分式形式的轉(zhuǎn)化,屬于中檔題.16、【解析】

由題意利用誘導公式求得的值,可得要求式子的值.【詳解】,則,故答案為:.【點睛】本題主要考查誘導公式的應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)最大值為,此時【解析】

(1)連接,在中,求出,進而求出面積以及角的范圍;(2)令,再求出的范圍,轉(zhuǎn)化為二次函數(shù)即可求出最大值,以及相應(yīng)角的值.【詳解】(1)連接,在中,,(2),令,因為,所以,所以因為在上單調(diào)遞增,所以時有最大值為,此時【點睛】本題主要考查三角函數(shù)與實際應(yīng)用相結(jié)合,最終轉(zhuǎn)化為二次函數(shù)進行求解,這類問題的特點是通過現(xiàn)實生活的事例考查解決問題的能力、仔細理解題,才能將實際問題轉(zhuǎn)化為數(shù)學模型進行解答.18、(1)(2)【解析】

(1)根據(jù)三角函數(shù)的基本關(guān)系式,可得,再結(jié)合正切的倍角公式,即可求解;(2)由(1)知,結(jié)合三角函數(shù)的基本關(guān)系式,即可求解,得到答案.【詳解】(1)由,根據(jù)三角函數(shù)的基本關(guān)系式,可得,所以.(2)由(1)知,又由.【點睛】本題主要考查了三角函數(shù)的基本關(guān)系式和正切的倍角公式的化簡求值,其中解答中熟記三角函數(shù)的基本關(guān)系式和三角恒等變換的公式,準確運算是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.19、(1)(2)【解析】

(1)利用正弦定理與余弦的差角公式運算求解即可.(2)根據(jù)正弦定理可得,再利用余弦定理與基本不等式求得再代入面積求最大值即可.【詳解】解:(1)在中,由正弦定理得,得,又∴.即,∴,又,∴.(2)結(jié)合(1)由正弦定理可知,由余弦定理可知,所以當且僅當時等號成立,所以,所以面積的最大值為.【點睛】本題主要考查了正余弦定理與三角形面積公式在解三角形中的運用.同時考查了根據(jù)基本不等式求解三角形面積的最值問題.屬于中檔題.20、(1)分別抽取人,人,人;(2)【解析】

(1)頻率分布直方圖各組頻率等于各組矩形的面積,進而算出各組頻數(shù),再根據(jù)分層抽樣總體及各層抽樣比例相同求解;(2)列出從名志愿者中隨機抽取名志愿者所有的情況,再根據(jù)古典概型概率公式求解.【詳解】(1)第組的人數(shù)為,第組的人數(shù)為,第組的人數(shù)為,因為第,,組共有名志愿者,所以利用分層抽樣的方法在名志愿者中抽取名志愿者,每組抽取的人數(shù)分別為:第組:;第組:;第組:.所以應(yīng)從第,,組中分別抽取人,人,人.(2)設(shè)“第組的志愿者有被抽中”為事件.記第組的名志愿者為,,,第組的名志愿者為,,第組的名志愿者為,則從名志愿者中抽取名志愿者有:,,,,,,,,,,,,,,,共有種.其中第組的志愿者被抽中的有種,答:第組的志愿者有被抽中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論