版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆安徽省合肥市肥東二中高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,,,是邊的中點(diǎn).為所在平面內(nèi)一點(diǎn)且滿足,則的值為()A. B. C. D.2.若不等式的解集為空集,則實(shí)數(shù)a的取值范圍是()A. B. C. D.3.已知向量=(),=(-1,1),若,則的值為()A. B. C. D.4.已知角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊上有一點(diǎn),則()A. B. C. D.5.已知向量,且,則的值為()A.6 B.-6 C. D.6.在中,內(nèi)角所對(duì)的邊分別為.若,則角的值為()A. B. C. D.7.長(zhǎng)方體中,已知,,棱在平面內(nèi),則長(zhǎng)方體在平面內(nèi)的射影所構(gòu)成的圖形面積的取值范圍是()A. B. C. D.8.不等式的解集是A. B.C.或 D.9.己知函數(shù)(,,,)的圖象(部分)如圖所示,則的解析式是()A. B.C. D.10.設(shè)△的內(nèi)角所對(duì)的邊為,,,,則()A. B.或 C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的首項(xiàng),,.若對(duì)任意,都有恒成立,則的取值范圍是_____12.設(shè)向量,定義一種向量積:.已知向量,點(diǎn)P在的圖象上運(yùn)動(dòng),點(diǎn)Q在的圖象上運(yùn)動(dòng),且滿足(其中O為坐標(biāo)原點(diǎn)),則的單調(diào)增區(qū)間為________.13.已知,,且,則__________.14.計(jì)算:________15.已知,且是第一象限角,則的值為__________.16.在區(qū)間[-1,2]上隨機(jī)取一個(gè)數(shù)x,則x∈[0,1]的概率為.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的首項(xiàng),其前n項(xiàng)和為滿足.(1)數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和表達(dá)式.18.在中,三個(gè)內(nèi)角所對(duì)的邊分別為,滿足.(1)求角的大?。唬?)若,求,的值.(其中)19.已知數(shù)列的前項(xiàng)和為,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.20.如圖,圓錐中,是圓的直徑,是底面圓上一點(diǎn),且,點(diǎn)為半徑的中點(diǎn),連.(Ⅰ)求證:平面;(Ⅱ)當(dāng)是邊長(zhǎng)為4的正三角形時(shí),求點(diǎn)到平面的距離.21.如圖,在四棱柱中,底面ABCD為菱形,平面ABCD,AC與BD交于點(diǎn)O,,,.(1)證明:平面平面;(2)求二面角的大小.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
根據(jù)平面向量基本定理可知,將所求數(shù)量積化為;由模長(zhǎng)的等量關(guān)系可知和為等腰三角形,根據(jù)三線合一的特點(diǎn)可將和化為和,代入可求得結(jié)果.【詳解】為中點(diǎn)和為等腰三角形,同理可得:本題正確選項(xiàng):【點(diǎn)睛】本題考查向量數(shù)量積的求解問題,關(guān)鍵是能夠利用模長(zhǎng)的等量關(guān)系得到等腰三角形,從而將含夾角的運(yùn)算轉(zhuǎn)化為已知模長(zhǎng)的向量的運(yùn)算.2、D【解析】
對(duì)分兩種情況討論分析得解.【詳解】當(dāng)時(shí),不等式為,所以滿足題意;當(dāng)時(shí),,綜合得.故選:D【點(diǎn)睛】本題主要考查不等式的恒成立問題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.3、D【解析】
對(duì)條件兩邊平方,得到該兩個(gè)向量分別垂直,代入點(diǎn)的坐標(biāo),計(jì)算參數(shù),即可.【詳解】結(jié)合條件可知,,得到,代入坐標(biāo),得到,解得,故選D.【點(diǎn)睛】本道題考查了向量的運(yùn)算,考查了向量垂直坐標(biāo)表示,難度中等.4、D【解析】
根據(jù)任意角三角函數(shù)定義可求得;根據(jù)誘導(dǎo)公式可將所求式子化為,代入求得結(jié)果.【詳解】由得:本題正確選項(xiàng):【點(diǎn)睛】本題考查任意角三角函數(shù)值的求解、利用誘導(dǎo)公式化簡(jiǎn)求值問題;關(guān)鍵是能夠通過角的終邊上的點(diǎn)求得角的三角函數(shù)值.5、A【解析】
兩向量平行,內(nèi)積等于外積?!驹斀狻?,所以選A.【點(diǎn)睛】本題考查兩向量平行的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題。6、C【解析】
根據(jù)正弦定理將邊化角,可得,由可求得,根據(jù)的范圍求得結(jié)果.【詳解】由正弦定理得:本題正確選項(xiàng):【點(diǎn)睛】本題考查正弦定理邊角互化的應(yīng)用,涉及到兩角和差正弦公式、三角形內(nèi)角和、誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.7、A【解析】
本題等價(jià)于求過BC直線的平面截長(zhǎng)方體的面積的取值范圍?!驹斀狻块L(zhǎng)方體在平面內(nèi)的射影所構(gòu)成的圖形面積的取值范圍等價(jià)于,求過BC直線的平面截長(zhǎng)方體的面積的取值范圍。由圖形知,,故選A.【點(diǎn)睛】將問題等價(jià)轉(zhuǎn)換為可視的問題。8、B【解析】試題分析:∵,∴,即,∴不等式的解集為.考點(diǎn):分式不等式轉(zhuǎn)化為一元二次不等式.9、C【解析】
根據(jù)圖象可知,利用正弦型函數(shù)可求得;根據(jù)最大值和最小值可確定,利用及可求得,從而得到函數(shù)解析式.【詳解】由圖象可知,的最小正周期:又又,且,,即,本題正確選項(xiàng):【點(diǎn)睛】本題考查根據(jù)圖象求解三角函數(shù)解析式的問題,關(guān)鍵是能夠明確由最大值和最小值確定;由周期確定;通常通過最值點(diǎn)來進(jìn)行求解,屬于??碱}型.10、B【解析】試題分析:因?yàn)?,,,由正弦定理,因?yàn)槭侨切蔚膬?nèi)角,且,所以,故選B.考點(diǎn):正弦定理二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
代入求得,利用遞推關(guān)系式可得,從而可證得和均為等差數(shù)列,利用等差數(shù)列通項(xiàng)公式可求得通項(xiàng);根據(jù)恒成立不等式可得到不等式組:,解不等式組求得結(jié)果.【詳解】當(dāng)時(shí),,解得:由得:是以為首項(xiàng),為公差的等差數(shù)列;是以為首項(xiàng),為公差的等差數(shù)列,恒成立,解得:即的取值范圍為:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍的問題,關(guān)鍵是能夠根據(jù)遞推關(guān)系式得到奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別成等差數(shù)列,從而分別求得通項(xiàng)公式,進(jìn)而根據(jù)所需的單調(diào)性得到不等關(guān)系.12、【解析】
設(shè),,由求出的關(guān)系,用表示,并把代入即得,后利用余弦函數(shù)的單調(diào)性可得增區(qū)間.【詳解】設(shè),,由得:,∴,,∵,∴,,即,令,得,∴增區(qū)間為.故答案為:.【點(diǎn)睛】本題考查新定義,正確理解新定義運(yùn)算是解題關(guān)鍵.考查三角函數(shù)的單調(diào)性.利用新定義建立新老圖象間點(diǎn)的聯(lián)系,求出新函數(shù)的解析式,結(jié)合余弦函數(shù)性質(zhì)求得增區(qū)間.13、【解析】
根據(jù)向量平行的坐標(biāo)表示可求得;代入兩角和差正切公式即可求得結(jié)果.【詳解】本題正確結(jié)果:【點(diǎn)睛】本題考查兩角和差正切公式的應(yīng)用,涉及到向量平行的坐標(biāo)表示,屬于基礎(chǔ)題.14、【解析】
用正弦、正切的誘導(dǎo)公式化簡(jiǎn)求值即可.【詳解】.【點(diǎn)睛】本題考查了正弦、正切的誘導(dǎo)公式,考查了特殊角的正弦值和正切值.15、;【解析】
利用兩角和的公式把題設(shè)展開后求得的值,進(jìn)而利用的范圍判斷的范圍,利用同角三角函數(shù)的基本關(guān)系求得的值,最后利用誘導(dǎo)公式和對(duì)原式進(jìn)行化簡(jiǎn),把的值和題設(shè)條件代入求解即可.【詳解】,,即,,兩邊同時(shí)平方得到:,解得,是第一象限角,,得,,即為第一或第四象限,,.故答案為:.【點(diǎn)睛】本題考查了兩角差的余弦公式、誘導(dǎo)公式以及同角三角函數(shù)的基本關(guān)系,需熟記三角函數(shù)中的公式,屬于中檔題.16、【解析】
直接利用長(zhǎng)度型幾何概型求解即可.【詳解】因?yàn)閰^(qū)間總長(zhǎng)度為,符合條件的區(qū)間長(zhǎng)度為,所以,由幾何概型概率公式可得,在區(qū)間[-1,2]上隨機(jī)取一個(gè)數(shù)x,則x∈[0,1]的概率為,故答案為:.【點(diǎn)睛】解決幾何概型問題常見類型有:長(zhǎng)度型、角度型、面積型、體積型,求與長(zhǎng)度有關(guān)的幾何概型問題關(guān)鍵是計(jì)算問題的總長(zhǎng)度以及事件的長(zhǎng)度.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)等差數(shù)列性質(zhì),由可知為等差數(shù)列,結(jié)合首項(xiàng)與公差即可求得的表達(dá)式,由即可求得數(shù)列的通項(xiàng)公式;(2)代入數(shù)列的通項(xiàng)公式可得數(shù)列的通項(xiàng)公式.結(jié)合錯(cuò)位相減法,即可求得數(shù)列的前n項(xiàng)和.【詳解】(1)由,可知是等差數(shù)列,其公差又,得,知首項(xiàng)為,得,即當(dāng)時(shí),有當(dāng),也滿足此通項(xiàng),故;(2)由(1)可知,所以可得由兩式相減得整理得.【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式的求法,的應(yīng)用,錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,屬于中檔題.18、(1);(2)4,6【解析】
(1)已知等式利用正弦定理化簡(jiǎn),整理后利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式化簡(jiǎn),求出的值,即可確定出的度數(shù);(2)根據(jù)平面向量數(shù)量積的運(yùn)算法則計(jì)算得到一個(gè)等式,記作①,把的度數(shù)代入求出的值,記作②,然后利用余弦定理表示出,把及的值代入求出的值,利用完全平方公式表示出,把相應(yīng)的值代入,開方求出的值,由②③可知與為一個(gè)一元二次方程的兩個(gè)解,求出方程的解,根據(jù)大于,可得出,的值.【詳解】(1)已知等式,利用正弦定理化簡(jiǎn)得,整理得,即,,則.(2)由,得,①又由(1),②由余弦定理得,將及①代入得,,,③由②③可知與為一個(gè)一元二次方程的兩個(gè)根,解此方程,并由大于,可得.【點(diǎn)睛】以三角形和平面向量為載體,三角恒等變換為手段,正弦定理、余弦定理為工具,對(duì)三角函數(shù)及解三角形進(jìn)行考查是近幾年高考考查的一類熱點(diǎn)問題,一般難度不大,但綜合性較強(qiáng).解答這類問題,兩角和與差的正余弦公式、誘導(dǎo)公式以及二倍角公式,一定要熟練掌握并靈活應(yīng)用,特別是二倍角公式的各種變化形式要熟記于心.19、(1);(2).【解析】
(1)由遞推公式,再遞推一步,得,兩式相減化簡(jiǎn)得,可以判斷數(shù)列是等差數(shù)列,進(jìn)而可以求出等差數(shù)列的通項(xiàng)公式;(2)根據(jù)(1)和對(duì)數(shù)的運(yùn)算性質(zhì),用裂項(xiàng)相消法可以求出數(shù)列的前項(xiàng)和.【詳解】解:(1)由知所以,即,從而所以,數(shù)列是以2為公比的等比數(shù)列又可得,綜上所述,故.(2)由(1)可知,故,綜上所述,所以,故而所以.【點(diǎn)睛】本題考查了已知遞推公式求數(shù)列通項(xiàng)公式問題,考查了等差數(shù)列的判斷以及等差數(shù)列的通項(xiàng)公式,考查了用裂項(xiàng)相消法求數(shù)列前項(xiàng)和問題,考查了數(shù)學(xué)運(yùn)算能力.20、(Ⅰ)見證明;(Ⅱ)【解析】
(Ⅰ)由平面,證得,再由為等邊三角形,得到,利用線面垂直的判定定理,即可證得平面;(Ⅱ)利用等體積法,即可求得點(diǎn)到平面的距離.【詳解】(Ⅰ)證明:在圓錐中,則平面,又因?yàn)槠矫妫?,因?yàn)椋?,所以,又,所以為等邊三角形,因?yàn)闉橹悬c(diǎn),所以,又,所以平面;(Ⅱ)依題意,,因?yàn)闉橹睆?,所以,又,所以,中,邊上的高為,的面積為,又,,則面積為,所以,解得.【點(diǎn)睛】本題主要考查了線面垂直的判定與證明,以及利用等體積法求解點(diǎn)面距,其中解答中熟練線面位置關(guān)系的判定定理,以及合理運(yùn)用等體積法的運(yùn)用是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.21、(1)證明見解析;(2)﹒【解析】
(1)證面面垂直只需證一個(gè)平面內(nèi)有一條直線和另一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 品管經(jīng)理述職報(bào)告
- 肺部感染護(hù)理查房指南
- 《GBT 34341-2017 組織水足跡評(píng)價(jià)和報(bào)告指南》專題研究報(bào)告
- 2026年青海建筑職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)及參考答案詳解1套
- 新能源汽車充電樁信息運(yùn)維服務(wù)合同
- 智能手環(huán)維修技師(高級(jí))考試試卷及答案
- 珠寶設(shè)計(jì)行業(yè)珠寶設(shè)計(jì)項(xiàng)目經(jīng)理崗位招聘考試試卷及答案
- 物業(yè)公司年度個(gè)人工作總結(jié)報(bào)告2025(3篇)
- 2025年公共衛(wèi)生的試題及答案
- 2025年化學(xué)單質(zhì):碳項(xiàng)目發(fā)展計(jì)劃
- 2025年中國(guó)大唐集團(tuán)有限公司校園招聘筆試參考題庫(kù)附帶答案詳解
- 2025年國(guó)投集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 黑龍江省哈爾濱市2024屆中考數(shù)學(xué)試卷(含答案)
- 常用統(tǒng)計(jì)軟件應(yīng)用知到智慧樹章節(jié)測(cè)試課后答案2024年秋揚(yáng)州大學(xué)
- 危險(xiǎn)作業(yè)安全培訓(xùn)
- 石油鉆機(jī)講義
- 中醫(yī)寒熱辨證
- 環(huán)衛(wèi)安全隱患排查報(bào)告
- 海洋氣象數(shù)據(jù)同化技術(shù)創(chuàng)新
- 《光伏發(fā)電工程安全驗(yàn)收評(píng)價(jià)規(guī)程》(NB-T 32038-2017)
- 帶你聽懂中國(guó)傳統(tǒng)音樂智慧樹知到期末考試答案2024年
評(píng)論
0/150
提交評(píng)論