2024屆天津市寶坻一中等七校高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第1頁
2024屆天津市寶坻一中等七校高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第2頁
2024屆天津市寶坻一中等七校高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第3頁
2024屆天津市寶坻一中等七校高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第4頁
2024屆天津市寶坻一中等七校高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆天津市寶坻一中等七校高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)為正數(shù),為的等差中項,為的等比中項,則與的大小關(guān)為()A. B. C. D.2.若將函數(shù)的圖象向左平移個單位長度,平移后的圖象關(guān)于點對稱,則函數(shù)在上的最小值是A. B. C. D.3.函數(shù)的圖象是()A. B. C. D.4.若,,則的終邊所在的象限為()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限5.在中,是斜邊上的兩個動點,且,則的取值范圍為()A. B. C. D.6.《九章算術(shù)》卷第五《商功》中,有問題“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高一丈.問積幾何?”,意思是:“今有底面為矩形的屋脊狀的楔體,下底面寬丈,長丈;上棱長丈,無寬,高丈(如圖).問它的體積是多少?”這個問題的答案是()A.立方丈 B.立方丈C.立方丈 D.立方丈7.高鐵、掃碼支付、共享單車、網(wǎng)購被稱為中國的“新四大發(fā)明”,為評估共享單車的使用情況,選了座城市作實驗基地,這座城市共享單車的使用量(單位:人次/天)分別為,,…,,下面給出的指標中可以用來評估共享單車使用量的穩(wěn)定程度的是()A.,,…,的標準差 B.,,…,的平均數(shù)C.,,…,的最大值 D.,,…,的中位數(shù)8.已知向量=(2,tan),=(1,-1),∥,則=()A.2 B.-3 C.-1 D.-39.若,則下列不等式正確的是()A. B. C. D.10.數(shù)列的通項,其前項之和為,則在平面直角坐標系中,直線在軸上的截距為()A.-10 B.-9 C.10 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.某校高一、高二、高三分別有學(xué)生1600名、1200名、800名,為了解該校高中學(xué)生的牙齒健康狀況,按各年級的學(xué)生數(shù)進行分層抽樣,若高三抽取20名學(xué)生,則高一、高二共抽取的學(xué)生數(shù)為.12.已知等比數(shù)列中,,,若數(shù)列滿足,則數(shù)列的前項和=________.13.已知,則__________.14.數(shù)列通項公式,前項和為,則________.15.設(shè)滿足約束條件,則目標函數(shù)的最大值為______.16.在△ABC中,若,則△ABC的形狀是____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.正項數(shù)列的前n項和Sn滿足:(1)求數(shù)列的通項公式;(2)令,數(shù)列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.18.設(shè)函數(shù).(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)若,求函數(shù)的值域.19.已知、、是的內(nèi)角,且,.(1)若,求的外接圓的面積:(2)若,且為鈍角三角形,求正實數(shù)的取值范圍.20.已知,且,向量,.(1)求函數(shù)的解析式,并求當時,的單調(diào)遞增區(qū)間;(2)當時,的最大值為5,求的值;(3)當時,若不等式在上恒成立,求實數(shù)的取值范圍.21.在中,,點D在邊AB上,,且.(1)若的面積為,求CD;(2)設(shè),若,求證:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由等差中項及等比中項的運算可得,,再結(jié)合即可得解.【詳解】解:因為為正數(shù),為的等差中項,為的等比中項,則,,又,當且僅當時取等號,又,所以,故選:B.【點睛】本題考查了等差中項及等比中項的運算,重點考查了重要不等式的應(yīng)用,屬基礎(chǔ)題.2、C【解析】

由題意得,故得平移后的解析式為,根據(jù)所的圖象關(guān)于點對稱可求得,從而可得,進而可得所求最小值.【詳解】由題意得,將函數(shù)的圖象向左平移個單位長度所得圖象對應(yīng)的解析式為,因為平移后的圖象關(guān)于點對稱,所以,故,又,所以.所以,由得,所以當或,即或時,函數(shù)取得最小值,且最小值為.故選C.【點睛】本題考查三角函數(shù)的性質(zhì)的綜合應(yīng)用,解題的關(guān)鍵是求出參數(shù)的值,容易出現(xiàn)的錯誤是函數(shù)圖象平移時弄錯平移的方向和平移量,此時需要注意在水平方向上的平移或伸縮只是對變量而言的.3、D【解析】

求出分段函數(shù)的解析式,由此確定函數(shù)圖象.【詳解】由于,根據(jù)函數(shù)解析式可知,D選項符合.故選:D【點睛】本小題主要考查分段函數(shù)圖象的判斷,屬于基礎(chǔ)題.4、B【解析】由一全正二正弦三正切四余弦可得的終邊所在的象限為第二象限,故選B.考點:三角函數(shù)5、A【解析】

可借助直線方程和平面直角坐標系,代換出之間的關(guān)系,再結(jié)合向量的數(shù)量積公式進行求解即可【詳解】如圖所示:設(shè)直線方程為:,,,由得,可設(shè),則,,,,當時,,故故選A【點睛】本題考查向量數(shù)量積的坐標運算,向量法在幾何中的應(yīng)用,屬于中檔題6、A【解析】過點分別作平面和平面垂直于底面,所以幾何體的體積分為三部分中間是直三棱柱,兩邊是兩個一樣的四棱錐,所以立方丈,故選A.7、A【解析】

利用方差或標準差表示一組數(shù)據(jù)的穩(wěn)定程度可得出選項.【詳解】表示一組數(shù)據(jù)的穩(wěn)定程度是方差或標準差,標準差越小,數(shù)據(jù)越穩(wěn)定故選:A【點睛】本題考查了用樣本估計總體,需掌握住數(shù)據(jù)的穩(wěn)定程度是用方差或標準差估計的,屬于基礎(chǔ)題.8、B【解析】

通過向量平行得到的值,再利用和差公式計算【詳解】向量=(2,tan),=(1,-1),∥故答案選B【點睛】本題考查了向量的平行,三角函數(shù)和差公式,意在考查學(xué)生的計算能力.9、C【解析】

根據(jù)不等式性質(zhì),結(jié)合特殊值即可比較大小.【詳解】對于A,當,滿足,但不滿足,所以A錯誤;對于B,當時,不滿足,所以B錯誤;對于C,由不等式性質(zhì)“不等式兩邊同時加上或減去同一個數(shù)或式子,不等式符號不變”,所以由可得,因而C正確;對于D,當時,不滿足,所以D錯誤.綜上可知,C為正確選項,故選:C.【點睛】本題考查了不等式大小比較,不等式性質(zhì)及特殊值的簡單應(yīng)用,屬于基礎(chǔ)題.10、B【解析】試題分析:因為數(shù)列的通項公式為,所以其前項和為,令,所以直線方程為,令,解得,即直線在軸上的截距為,故選B.考點:數(shù)列求和及直線方程.二、填空題:本大題共6小題,每小題5分,共30分。11、70【解析】設(shè)高一、高二抽取的人數(shù)分別為,則,解得.【考點】分層抽樣.12、【解析】試題分析:根據(jù)題意,由于等比數(shù)列中,,,則可知公比為,那么可知等比數(shù)列中,,,故可知,那么可知數(shù)列的前項和=1=,故可知答案為.考點:等比數(shù)列點評:主要是考查了等比數(shù)列的通項公式以及數(shù)列的求和的運用,屬于基礎(chǔ)題.13、【解析】

對已知等式的左右兩邊同時平方,利用同角的三角函數(shù)關(guān)系式和二倍角的正弦公式,可以求出的值,再利用二倍角的余弦公式可以求出.【詳解】因為,所以,即,所以.【點睛】本題考查了同角的三角函數(shù)關(guān)系,考查了二倍角的正弦公式和余弦公式,考查了數(shù)學(xué)運算能力.14、1【解析】

利用裂項求和法求出,取極限進而即可求解.【詳解】,故,所以,故答案為:1【點睛】本題考查了裂項求和法以及求極限值,屬于基礎(chǔ)題.15、7【解析】

首先畫出可行域,然后判斷目標函數(shù)的最優(yōu)解,從而求出目標函數(shù)的最大值.【詳解】如圖,畫出可行域,作出初始目標函數(shù),平移目標函數(shù),當目標函數(shù)過點時,目標函數(shù)取得最大值,,解得,.故填:7.【點睛】本題考查了線性規(guī)劃問題,屬于基礎(chǔ)題型.16、鈍角三角形【解析】

由,結(jié)合正弦定理可得,,由余弦定理可得可判斷的取值范圍【詳解】解:,由正弦定理可得,由余弦定理可得是鈍角三角形故答案為鈍角三角形.【點睛】本題主要考查了正弦定理、余弦定理的綜合應(yīng)用在三角形的形狀判斷中的應(yīng)用,屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】

(1)因為數(shù)列的前項和滿足:,所以當時,,即解得或,因為數(shù)列都是正項,所以,因為,所以,解得或,因為數(shù)列都是正項,所以,當時,有,所以,解得,當時,,符合所以數(shù)列的通項公式,;(2)因為,所以,所以數(shù)列的前項和為:,當時,有,所以,所以對于任意,數(shù)列的前項和.18、(1);(2).【解析】分析:(1)由二倍角公式將表達式化一得到,,令,得到單調(diào)區(qū)間;(2)時,,根據(jù)第一問的表達式得到值域.詳解:(1)由令得:所以,函數(shù)的單調(diào)減區(qū)間為(2)當時,所以,函數(shù)的值域是:.點睛:本題求最值利用三角函數(shù)輔助角公式將函數(shù)化為的形式,利用三角函數(shù)的圖像特點得到函數(shù)的值域.19、(1)(2)【解析】

(1)根據(jù)同角三角函數(shù)基本關(guān)系先求得,再由正弦定理求得即可;(2)因大小不能確定,故鈍角不能確定,結(jié)合三角形三邊關(guān)系和余弦定理特點即可判斷【詳解】(1)由,又,即,故外接圓的面積為:(2),,,根據(jù)三邊關(guān)系有,當為鈍角時,可得,即,解得,故;當為鈍角時,可得,即,解得,故;綜上可得的范圍是【點睛】本題考查正弦定理的應(yīng)用,余弦定理和三角形中形狀的判斷的關(guān)系,屬于中檔題20、(1),單調(diào)增區(qū)間為;(2)或;(3).【解析】試題分析:(Ⅰ)化簡,解不等式求得的范圍即得增區(qū)間(2)討論a的正負,確定最大值,求a;(3)化簡絕對值不等式,轉(zhuǎn)化在上恒成立,即,求出在上的最大值,最小值即得解.試題解析:(1)∵∴∴單調(diào)增區(qū)間為(2)當時,若,,∴若,,∴∴綜上,或.(3)在上恒成立,即在上恒成立,∴在上最大值2,最小值,∴∴的取值范圍.點睛:本題考查了平面向量的數(shù)量積的應(yīng)用,三角函數(shù)的單調(diào)性與最值,三角函數(shù)的化簡,恒成立問題的處理及分類討論的數(shù)學(xué)思想,綜合性強.21、(1)(2)證明見解析【解析】

(1)直接利用三角形的面積公式求得,再由余弦定理列方程求出結(jié)果;(2)兩次利用正弦定理,結(jié)合兩角差的正弦公式、二倍角的正弦公式進行恒等變換求出結(jié)果.【詳解】(1)因為,即,又因為,,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論