版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
廣東省廣州市增城高級中學2024年高一下數(shù)學期末學業(yè)水平測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,且,則()A. B. C. D.2.已知點O是邊長為2的正三角形ABC的中心,則()A. B. C. D.3.如圖是一名籃球運動員在最近6場比賽中所得分數(shù)的莖葉圖,則下列關于該運動員所得分數(shù)的說法錯誤的是()A.中位數(shù)為14 B.眾數(shù)為13 C.平均數(shù)為15 D.方差為194.集合,則()A. B. C. D.5.在下列區(qū)間中,函數(shù)的零點所在的區(qū)間為()A. B. C. D.6.某幾何體的直觀圖如圖所示,是的直徑,垂直所在的平面,且,為上從出發(fā)繞圓心逆時針方向運動的一動點.若設弧的長為,的長度為關于的函數(shù),則的圖像大致為()A. B.C. D.7.一實體店主對某種產(chǎn)品的日銷售量(單位:件)進行為期n天的數(shù)據(jù)統(tǒng)計,得到如下統(tǒng)計圖,則下列說法錯誤的是()A. B.中位數(shù)為17C.眾數(shù)為17 D.日銷售量不低于18的頻率為0.58.已知圓和兩點,,若圓上存在點,使得,則的最大值為()A.7 B.6 C.5 D.49.已知圓:及直線:,當直線被截得的弦長為時,則等于()A. B. C. D.10.在四邊形中,如果,,那么四邊形的形狀是()A.矩形 B.正方形 C.菱形 D.直角梯形二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線與軸、軸相交于兩點,點在圓上移動,則面積的最大值和最小值之差為.12.的值為__________.13.已知,,若,則______.14.已知,,,則的最小值為__________.15.《九章算術》中,將底面為長方形且由一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的三棱錐稱之為鱉臑.若三棱錐為鱉臑,平面,,三棱錐的四個頂點都在球的球面上,則球的表面積為__________.16.已知函數(shù)(,)的部分圖像如圖所示,則函數(shù)解析式為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,且,求的值.18.已知為的三內(nèi)角,且其對邊分別為.且(1)求的值;(2)若,三角形面積,求的值.19.已知向量,向量.(1)求向量的坐標;(2)當為何值時,向量與向量共線.20.在中,角所對的邊分別為,且.(1)求邊長;(2)若的面積為,求邊長.21.已知函數(shù)(其中,)的最小正周期為.(1)求的值;(2)如果,且,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
利用兩角和差正切公式可求得;根據(jù)范圍可求得;利用兩角和差公式計算出;利用兩角和差余弦公式計算出結(jié)果.【詳解】,又本題正確選項:【點睛】本題考查利用三角恒等變換中的兩角和差的正余弦和正切公式求解三角函數(shù)值的問題,涉及到同角三角函數(shù)關系的應用;關鍵是能夠熟練應用兩角和差公式進行配湊,求得所需的三角函數(shù)值.2、B【解析】
直接由正三角形的性質(zhì)求出兩向量的模和夾角,由數(shù)量積定義計算.【詳解】∵點O是邊長為2的正三角形ABC的中心,∴,,∴.故選:B.【點睛】本題考查平面向量的數(shù)量積,掌握數(shù)量積的定義是解題關鍵.3、D【解析】從題設中所提供的莖葉圖可知六個數(shù)分別是,所以其中位數(shù)是,眾數(shù)是,平均數(shù),方差是,應選答案D.4、C【解析】
先求解不等式化簡集合A和B,再根據(jù)集合的交集運算求得結(jié)果即可.【詳解】因為集合,集合或,所以.故本題正確答案為C.【點睛】本題考查一元二次不等式,分式不等式的解法和集合的交集運算,注意認真計算,仔細檢查,屬基礎題.5、B【解析】
由函數(shù)的解析式,再根據(jù)函數(shù)零點的存在定理可得函數(shù)的零點所在的區(qū)間.【詳解】函數(shù)的零點所在的區(qū)間即函數(shù)與的交點所在區(qū)間.由函數(shù)與在定義域上只有一個交點,如圖.函數(shù)在定義域上只有一個零點.又,所以.所以的零點在上故選:B【點睛】本題主要考查求函數(shù)的零點所在區(qū)間,函數(shù)零點的存在定理,屬于基礎題.6、A【解析】如圖所示,設,則弧長,線段,作于當在半圓弧上運動時,,,即,由余弦函數(shù)的性質(zhì)知當時,即運動到點時有最小值,只有選項適合,又由對稱性知選,故選A.7、B【解析】
由統(tǒng)計圖,可計算出總數(shù)、中位數(shù)、眾數(shù),算得銷量不低于18件的天數(shù),即可求得頻率.【詳解】由統(tǒng)計圖可知,總數(shù),所以A正確;從統(tǒng)計圖可以看出,從小到大排列時,中間兩天的銷售量的平均值為,所以B錯誤;從統(tǒng)計圖可以看出,銷量最高的為17件,所以C正確;從統(tǒng)計圖可知,銷量不低于18的天數(shù)為,所以頻率為,所以D正確.綜上可知,錯誤的為B故選:B【點睛】本題考查了統(tǒng)計中的總數(shù)、中位數(shù)、眾數(shù)和頻率的相關概念和性質(zhì),屬于基礎題.8、B【解析】由題意知,點P在以原點(0,0)為圓心,以m為半徑的圓上,又因為點P在已知圓上,所以只要兩圓有交點即可,所以,故選B.考點:本小題主要考查兩圓的位置關系,考查數(shù)形結(jié)合思想,考查分析問題與解決問題的能力.9、C【解析】
求出圓心到直線的距離,由垂徑定理計算弦長可解得.【詳解】由題意,圓心為,半徑為2,圓心到直線的距離為,所以,解得.故選:C.【點睛】本題考查直線與圓相交弦長問題,解題方法由垂徑定理得垂直,由勾股定理列式計算.10、C【解析】試題分析:因為,所以,即四邊形的對角線互相垂直,排除選項AD;又因為,所以四邊形對邊平行且相等,即四邊形為平行四邊形,但不能確定鄰邊垂直,所以只能確定為菱形.考點:1.向量相等的定義;2.向量的垂直;二、填空題:本大題共6小題,每小題5分,共30分。11、15【解析】
解:設作出與已知直線平行且與圓相切的直線,
切點分別為,如圖所示
則動點C在圓上移動時,若C與點重合時,
△ABC面積達到最小值;而C與點重合時,△ABC面積達到最大值
∵直線3x+4y?12=0與x軸、y軸相交于A(4,0)、B(0,3)兩點
可得∴△ABC面積的最大值和最小值之差為
,
其中分別為點、點到直線AB的距離
∵是圓(x?5)2+(y?6)2=9的兩條平行切線與圓的切點
∴點、點到直線AB的距離之差等于圓的直徑,即
因此△ABC面積的最大值和最小值之差為
故答案為:1512、【解析】
直接利用誘導公式化簡求值.【詳解】,故答案為:.【點睛】本題考查誘導公式的應用,屬于基礎題.13、【解析】
首先令,分別把解出來,再利用整體換元的思想即可解決.【詳解】令所以令,所以所以【點睛】本題主要考查了整體換元的思想以及對數(shù)之間的運算和公式法解一元二次方程.整體換元的思想是高中的一個重點,也是高考??嫉膬?nèi)容需重點掌握.14、25【解析】
變形后,利用基本不等式可得.【詳解】當且僅當,即,時取等號.故答案為:25【點睛】本題考查了利用基本不等式求最值,屬于基礎題.15、【解析】
由題意得該四面體的四個面都為直角三角形,且平面,可得,.因為為直角三角形,可得,所以,因此,結(jié)合幾何關系,可求得外接球的半徑,,代入公式即可求球的表面積.【詳解】本題主要考查空間幾何體.由題意得該四面體的四個面都為直角三角形,且平面,,,,.因為為直角三角形,因此或(舍).所以只可能是,此時,因此,所以平面所在小圓的半徑即為,又因為,所以外接球的半徑,所以球的表面積為.【點睛】本題考查三棱錐的外接球問題,難點在于確定BC的長,即得到,再結(jié)合幾何性質(zhì)即可求解,考查學生空間想象能力,邏輯推理能力,計算能力,屬中檔題.16、y=sin(2x+).【解析】
由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值答案可求【詳解】根據(jù)函數(shù)y=sin(ωx+φ)(ω>0,0<φ)的部分圖象,可得A=1,?,∴ω=2,再結(jié)合五點法作圖可得2?φ=π,∴φ,則函數(shù)解析式為y=sin(2x+)故答案為:y=sin(2x+).【點睛】本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值難度中檔.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】
利用向量垂直和同角三角函數(shù)關系可求得;利用二倍角公式和同角三角函數(shù)平方關系將化為關于正余弦的齊次式的問題,分子分母同時除以可化為的形式,代入的值可求得結(jié)果.【詳解】,即【點睛】本題考查正余弦齊次式的求解問題,涉及到向量垂直的坐標表示、同角三角函數(shù)關系和二倍角公式的應用;關鍵是能夠靈活利用同角三角函數(shù)的平方關系構(gòu)造出關于正余弦的齊次式,進而構(gòu)造出正切的形式來進行求解.18、(1);(2)【解析】
(1)利用正弦定理化簡,并用三角形內(nèi)角和定理以及兩角和的正弦公式化簡,求得,由此求得的大小.(2)利用三角形的面積公式求得,利用余弦定理列方程,化簡求得的值.【詳解】解:(1),得:∵∴,即∵,∴,∵,∴(2)由(1)有,又由余弦定理得:又,,所以【點睛】本小題主要考查三角形的面積公式,考查正弦定理、余弦定理解三角形,考查運算求解能力,屬于中檔題.19、(1)(2)【解析】試題分析:(1)根據(jù)向量坐標運算公式計算;(2)求出的坐標,根據(jù)向量共線與坐標的關系列方程解出k;試題解析:(1)(2),∵與共線,∴∴20、(1);(2).【解析】試題分析:本題主要考查正弦定理、余弦定理、特殊角的三角函數(shù)值、三角形面積公式等基礎知識,同時考查考生的分析問題解決問題的能力和運算求解能力.第一問,利用正弦定理將邊換成角,消去,解出角C,再利用解出邊b的長;第二問,利用三角形面積公式,可直接解出a邊的值,再利用余弦定理解出邊c的長.試題解析:(Ⅰ)由正弦定理得,又,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職小學教育(小學教育)試題及答案
- 2025年中職農(nóng)業(yè)(改良實操)試題及答案
- 2025至2030中國智能停車系統(tǒng)市場現(xiàn)狀運營效率及投資回報周期評估報告
- 鄂溫克族自治旗2024-2025學年第二學期四年級語文期末學業(yè)評價題目及答案
- 2025-2030中國移動出行行業(yè)經(jīng)營管理風險與盈利模式分析研究報告
- 2025至2030零售行業(yè)虛擬現(xiàn)實技術應用與沉浸式購物體驗研究報告
- 2025至2030合成革市場替代品威脅與競爭對策研究報告
- 2025-2030汽車車身輕量化技術研究及行業(yè)前景與市場趨勢規(guī)劃分析報告
- 2025-2030汽車行業(yè)市場深度調(diào)研及發(fā)展趨勢和前景預測研究報告
- 2025-2030汽車租賃行業(yè)市場競爭格局融資模式投資收益評估規(guī)劃發(fā)展報告
- 2026年藥店培訓計劃試題及答案
- 2026春招:中國煙草真題及答案
- 物流鐵路專用線工程節(jié)能評估報告
- GB/T 15153.1-2024遠動設備及系統(tǒng)第2部分:工作條件第1篇:電源和電磁兼容性
- 初中語文 送別詩練習題(含答案)
- 企業(yè)標準-格式模板
- 五年級上冊道德與法治期末測試卷新版
- 2022年醫(yī)學專題-石家莊中國鮑曼不動桿菌感染診治與防控專家共識
- YY/T 1543-2017鼻氧管
- YS/T 903.1-2013銦廢料化學分析方法第1部分:銦量的測定EDTA滴定法
- FZ/T 70010-2006針織物平方米干燥重量的測定
評論
0/150
提交評論