版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省楚雄市古城中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的圖象()A.關(guān)于點(-,0)對稱 B.關(guān)于原點對稱 C.關(guān)于y軸對稱 D.關(guān)于直線x=對稱2.與直線平行,且到的距離為的直線方程為A. B. C. D.3.若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.4.?dāng)?shù)列只有5項,分別是3,5,7,9,11,的一個通項公式為()A. B. C. D.5.甲、乙兩名籃球運動員最近五場比賽的得分如莖葉圖所示,則()A.甲的中位數(shù)和平均數(shù)都比乙高B.甲的中位數(shù)和平均數(shù)都比乙低C.甲的中位數(shù)比乙的中位數(shù)高,但平均數(shù)比乙的平均數(shù)低D.甲的中位數(shù)比乙的中位數(shù)低,但平均數(shù)比乙的平均數(shù)高6.為了得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位7.函數(shù)的最小正周期是A. B. C. D.8.某幾何體的三視圖如圖所示,則該幾何體的表面積是()A.2 B. C. D.129.空間直角坐標(biāo)系中,點關(guān)于軸對稱的點的坐標(biāo)是()A. B.C. D.10.若,且,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.方程的解集是___________12.在中,,,,點在線段上,若,則的面積是_____.13.已知函數(shù),為的反函數(shù),則_______(用反三角形式表示).14.下列關(guān)于函數(shù)與的命題中正確的結(jié)論是______.①它們互為反函數(shù);②都是增函數(shù);③都是周期函數(shù);④都是奇函數(shù).15.若直線平分圓,則的值為________.16.設(shè)等差數(shù)列的前項和為,若,,則的最小值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C的對邊分別為a,b,c,且,,求△ABC的面積的最大值.18.等差數(shù)列中,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和.19.求過點且與圓相切的直線方程.20.已知數(shù)列的前n項和為,,,.(1)求證:數(shù)列是等差數(shù)列;(2)令,數(shù)列的前n項和為,求證:.21.定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱函數(shù)是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).(1)當(dāng)時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;(2)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)的取值范圍;(3)若,函數(shù)在上的上界是,求的解析式.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
關(guān)于點(-,0)對稱,選A.2、B【解析】試題分析:與直線平行的直線設(shè)為與的距離為考點:兩直線間的距離點評:兩平行直線間的距離3、B【解析】
由題意利用兩角和的余弦公式化簡函數(shù)的解析式,再利用余弦函數(shù)的單調(diào)性,得出結(jié)論.【詳解】函數(shù),令,求得,可得函數(shù)的增區(qū)間為,,.再根據(jù),,可得增區(qū)間為,,故選.【點睛】本題主要考查兩角和的余弦公式的應(yīng)用,考查余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.4、B【解析】
根據(jù)題意,得到數(shù)列為等差數(shù)列,通過首項和公差,得到通項.【詳解】因為數(shù)列只有5項,分別是3,5,7,9,11,所以是以為首項,為公差的等差數(shù)列,.故選:B.【點睛】本題考查求等差數(shù)列的通項,屬于簡單題.5、B【解析】
分別計算出兩組數(shù)據(jù)的中位數(shù)和平均數(shù)即可得出選項.【詳解】根據(jù)題意:甲的平均數(shù)為:,中位數(shù)為29,乙的平均數(shù)為:,中位數(shù)為30,所以甲的中位數(shù)和平均數(shù)都比乙低.故選:B【點睛】此題考查根據(jù)莖葉圖表示的數(shù)據(jù)分別辨析平均數(shù)和中位數(shù)的大小關(guān)系,分別計算求解即可得出答案.6、D【解析】
由函數(shù),根據(jù)三角函數(shù)的圖象變換,即可求解,得到答案.【詳解】由題意,函數(shù),為了得到函數(shù)的圖象,只需將函數(shù)的圖象向右平移個單位,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及正弦的倍角公式的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.7、D【解析】
的最小正周期為,求解得到結(jié)果.【詳解】由解析式可知,最小正周期本題正確選項:【點睛】本題考查的性質(zhì),屬于基礎(chǔ)題.8、C【解析】
由該幾何體的三視圖可知該幾何體為底面是等腰直角三角形的直棱柱,再結(jié)合棱柱的表面積公式求解即可.【詳解】解:由該幾何體的三視圖可知,該幾何體為底面是等腰直角三角形的直棱柱,又由圖可知底面等腰直角三角形的直角邊長為1,棱柱的高為1,則該幾何體的表面積是,故選:C.【點睛】本題考查了幾何體的三視圖,重點考查了棱柱的表面積公式,屬基礎(chǔ)題.9、A【解析】
關(guān)于軸對稱,縱坐標(biāo)不變,橫坐標(biāo)、豎坐標(biāo)變?yōu)橄喾磾?shù).【詳解】關(guān)于軸對稱的兩點的縱坐標(biāo)相同,橫坐標(biāo)、豎坐標(biāo)均互為相反數(shù).所以點關(guān)于軸對稱的點的坐標(biāo)是.故選:A.【點睛】本題考查空間平面直角坐標(biāo)系,考查關(guān)于坐標(biāo)軸、坐標(biāo)平面對稱的問題.屬于基礎(chǔ)題.10、A【解析】
利用二倍角的正弦公式和與余弦公式化簡可得.【詳解】∵,∴,∵,所以,∴,∴.故選:A【點睛】本題考查了二倍角的正弦公式,考查了二倍角的余弦公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】
方程的根等價于或,分別求兩個三角方程的根可得答案.【詳解】方程或,所以或,所以或.故答案為:或.【點睛】本題考查三角方程的求解,求解時可利用單位圓中的三角函數(shù)線,注意終邊相同角的表示,考查運算求解能力和數(shù)形結(jié)合思想的運用.12、【解析】
過作于,設(shè),運用勾股定理和三角形的面積公式,計算可得所求值.【詳解】過作于,設(shè),,,,又,可得,即有,可得的面積為.故答案為.【點睛】本題考查解三角形,考查勾股定理的運用,以及三角形的面積公式,考查化簡運算能力,屬于基礎(chǔ)題.13、【解析】
先將轉(zhuǎn)化為,,然后求出即可【詳解】因為所以所以所以所以把與互換可得即所以故答案為:【點睛】本題考查的是反函數(shù)的求法,較簡單14、④【解析】
利用反函數(shù),增減性,周期函數(shù),奇偶性判斷即可【詳解】①,當(dāng)時,的反函數(shù)是,故錯誤;②,當(dāng)時,是增函數(shù),故錯誤;③,不是周期函數(shù),故錯誤;④,與都是奇函數(shù),故正確故答案為④【點睛】本題考查正弦函數(shù)及其反函數(shù)的性質(zhì),熟記其基本性質(zhì)是關(guān)鍵,是基礎(chǔ)題15、1【解析】
把圓的一般式方程化為標(biāo)準(zhǔn)方程得到圓心,根據(jù)直線過圓心,把圓心的坐標(biāo)代入到直線的方程,得到關(guān)于的方程,解方程即可【詳解】圓的標(biāo)準(zhǔn)方程為,則圓心為直線過圓心解得故答案為【點睛】本題考查的是直線與圓的位置關(guān)系,解題的關(guān)鍵是求出圓心的坐標(biāo),屬于基礎(chǔ)題16、【解析】
用基本量法求出數(shù)列的通項公式,由通項公式可得取最小值時的值,從而得的最小值.【詳解】設(shè)數(shù)列公差為,則由已知得,解得,∴,,,又,、∴的最小值為.故答案為:..【點睛】本題考查等差數(shù)列的前項和的最值.首項為負(fù)且遞增的等差數(shù)列,滿足的最大的使得最小,首項為正且遞減的等差數(shù)列,滿足的最大的使得最大,當(dāng)然也可把表示為的二次函數(shù),由二次函數(shù)知識求得最值.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】
(1)利用二倍角公式、輔助角公式進(jìn)行化簡,,然后根據(jù)單調(diào)區(qū)間對應(yīng)的的公式求解單調(diào)區(qū)間;(2)根據(jù)計算出的值,再利用余弦定理計算出的最大值則可求面積的最大值,注意不等式取等號條件.【詳解】解:(1)∴函數(shù)的單調(diào)遞增區(qū)間為,(2)由(1)知得(舍)或∴有余弦定理得即∴當(dāng)且僅當(dāng)時取等號∴【點睛】(1)輔助角公式:;(2)三角形中,已知一邊及其對應(yīng)角時,若要求解面積最大值,在未給定三角形形狀時,可選用余弦定理求解更方便,若是給定三角形形狀,這時選用正弦定理并需要對角的范圍作出判斷.18、(1);(2).【解析】
(1)根據(jù)等差數(shù)列公式得到方程組,計算得到答案.(2)先求出,再利用裂項求和求得.【詳解】(1)等差數(shù)列中,,解得:(2)數(shù)列的前n項和.【點睛】本題考查了數(shù)列的通項公式,裂項求和,意在考查學(xué)生對于數(shù)列公式的靈活運用及計算能力.19、直線方程為或【解析】
當(dāng)直線的斜率不存在時,直線方程為,滿足題意,當(dāng)直線的斜率存在時,設(shè)出直線的方程,由圓心到直線的距離等于半徑,可解出的值,從而求出方程?!驹斀狻慨?dāng)直線的斜率不存在時,直線方程為,經(jīng)檢驗,滿足題意.當(dāng)直線的斜率存在時,設(shè)直線方程為,即,圓心到直線的距離等于半徑,即,可解得.即直線為.綜上,所求直線方程為或.【點睛】本題考查了圓的切線的求法,考查了直線的方程,考查了點到直線的距離公式,屬于基礎(chǔ)題。20、(1)證明見解析;(2)證明見解析.【解析】
(1)根據(jù)和的關(guān)系式,利用,整理化簡得到,從而證明是等差數(shù)列;(2)利用由(1)寫出的通項,利用裂項相消法求出,從而證明【詳解】(1)因為,所以當(dāng)時,兩式相減,得到,整理得,又因為,所以,所以數(shù)列是等差數(shù)列,公差為3;(2)當(dāng)時,,解得或,因為,所以,由(1)可知,即公差,所以,所以,所以【點睛】本題考查根據(jù)與的關(guān)系證明等差數(shù)列,裂項相消法求數(shù)列的和,屬于中檔題.21、(1)見解析;(2);(3).【解析】
(1)通過判斷函數(shù)的單調(diào)性,求出的值域,進(jìn)而可判斷在上是否為有界函數(shù);(2)利用題中所給定義,列出不等式,換元,轉(zhuǎn)化為恒成立問題,通過分參求構(gòu)造函數(shù)的最值,就可求得實數(shù)的取值范圍;(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學(xué)二年級(老年保健與管理)保健應(yīng)用階段測試題及答案
- 2025年中職體育(運動人體科學(xué)基礎(chǔ))試題及答案
- 2025年大學(xué)大三(物流管理)物流系統(tǒng)分析實務(wù)試題及答案
- 養(yǎng)老院老人康復(fù)設(shè)施維修人員職業(yè)道德制度
- 養(yǎng)老院工作人員著裝規(guī)范制度
- 八級工人制度
- 工行培訓(xùn)總結(jié)
- 2026年創(chuàng)業(yè)邦內(nèi)容運營筆試題及詳細(xì)解析
- 2026年能源審計方法與應(yīng)用模擬考試題含答案
- 2026年環(huán)境信息披露專員認(rèn)證考試習(xí)題含答案
- 商業(yè)廣場物管費測算表
- 申論范文寶典
- 【一例擴(kuò)張型心肌病合并心力衰竭患者的個案護(hù)理】5400字【論文】
- 四川橋梁工程系梁專項施工方案
- 貴州省納雍縣水東鄉(xiāng)水東鉬鎳礦采礦權(quán)評估報告
- GB.T19418-2003鋼的弧焊接頭 缺陷質(zhì)量分級指南
- GB/T 1690-2010硫化橡膠或熱塑性橡膠耐液體試驗方法
- 2023年杭州臨平環(huán)境科技有限公司招聘筆試題庫及答案解析
- 《看圖猜成語》課件
- LF爐機(jī)械設(shè)備安裝施工方案
- 企業(yè)三級安全生產(chǎn)標(biāo)準(zhǔn)化評定表(新版)
評論
0/150
提交評論