2024屆山西省應(yīng)一中高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第1頁(yè)
2024屆山西省應(yīng)一中高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第2頁(yè)
2024屆山西省應(yīng)一中高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第3頁(yè)
2024屆山西省應(yīng)一中高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第4頁(yè)
2024屆山西省應(yīng)一中高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆山西省應(yīng)一中高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.給出下面四個(gè)命題:①;②;③;④.其中正確的個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2.直線(,)過(guò)點(diǎn)(-1,-1),則的最小值為()A.9 B.1 C.4 D.103.函數(shù)的最小值為()A. B. C. D.4.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c.已知,a=2,c=,則C=A. B. C. D.5.甲、乙兩位同學(xué)在高一年級(jí)的5次考試中,數(shù)學(xué)成績(jī)統(tǒng)計(jì)如莖葉圖所示,若甲、乙兩人的平均成績(jī)分別是,則下列敘述正確的是()A.,乙比甲成績(jī)穩(wěn)定B.,甲比乙成績(jī)穩(wěn)定C.,乙比甲成績(jī)穩(wěn)定D.,甲比乙成績(jī)穩(wěn)定6.等差數(shù)列的前項(xiàng)和為.若,則()A. B. C. D.7.若,且,恒成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.8.若函數(shù),則()A.9 B.1 C. D.09.為了了解某同學(xué)的數(shù)學(xué)學(xué)習(xí)情況,對(duì)他的6次數(shù)學(xué)測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖所示,則下列關(guān)于該同學(xué)數(shù)學(xué)成績(jī)的說(shuō)法正確的是()A.中位數(shù)為83 B.眾數(shù)為85 C.平均數(shù)為85 D.方差為1910.如圖,網(wǎng)格紙的各小格都是正方形,粗實(shí)線畫出的事一個(gè)幾何體的三視圖,則這個(gè)幾何體是()A.三棱錐 B.三棱柱 C.四棱錐 D.四棱柱二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線平分圓的周長(zhǎng),則實(shí)數(shù)________.12.從甲、乙、丙、丁四個(gè)學(xué)生中任選兩人到一個(gè)單位實(shí)習(xí),余下的兩人到另一單位實(shí)習(xí),則甲、乙兩人不在同一單位實(shí)習(xí)的概率為________.13.已知為等差數(shù)列,為其前項(xiàng)和,若,則,則______.14.在等比數(shù)列中,,的值為________15.已知直線y=b(0<b<1)與函數(shù)f(x)=sinωx(ω>0)在y軸右側(cè)依次的三個(gè)交點(diǎn)的橫坐標(biāo)為x1=,x2=,x3=,則ω的值為______16.不論k為何實(shí)數(shù),直線通過(guò)一個(gè)定點(diǎn),這個(gè)定點(diǎn)的坐標(biāo)是______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知向量,.求:(1);(2)與的夾角的余弦值;(3)求的值使與為平行向量.18.已知向量(cosx+sinx,1),(sinx,),函數(shù).(1)若f(θ)=3且θ∈(0,π),求θ;(2)求函數(shù)f(x)的最小正周期T及單調(diào)遞增區(qū)間.19.在中,內(nèi)角的對(duì)邊分別為,且.(1)求角;(2)若,,求的值.20.若不等式的解集為.(1)求證:;(2)求不等式的解集.21.在中,內(nèi)角,,的對(duì)邊分別為,,.已知,,且的面積為.(1)求的值;(2)求的周長(zhǎng).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】①;②;③;④,所以正確的為①②,選B.2、A【解析】

將點(diǎn)的坐標(biāo)代入直線方程:,再利用乘1法求最值【詳解】將點(diǎn)的坐標(biāo)代入直線方程:,,當(dāng)且僅當(dāng)時(shí)取等號(hào)【點(diǎn)睛】已知和為定值,求倒數(shù)和的最小值,利用乘1法求最值。3、D【解析】

令,即有,則,運(yùn)用基本不等式即可得到所求最小值,注意等號(hào)成立的條件.【詳解】令,即有,則,當(dāng)且僅當(dāng),即時(shí),取得最小值.故選:【點(diǎn)睛】本題考查基本不等式,配湊法求解,屬于基礎(chǔ)題.4、B【解析】

試題分析:根據(jù)誘導(dǎo)公式和兩角和的正弦公式以及正弦定理計(jì)算即可詳解:sinB=sin(A+C)=sinAcosC+cosAsinC,∵sinB+sinA(sinC﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA,∴tanA=﹣1,∵<A<π,∴A=,由正弦定理可得,∵a=2,c=,∴sinC==,∵a>c,∴C=,故選B.點(diǎn)睛:本題主要考查正弦定理及余弦定理的應(yīng)用,屬于難題.在解與三角形有關(guān)的問(wèn)題時(shí),正弦定理、余弦定理是兩個(gè)主要依據(jù).解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡(jiǎn)捷一般來(lái)說(shuō),當(dāng)條件中同時(shí)出現(xiàn)及、時(shí),往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時(shí),往往運(yùn)用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進(jìn)行解答.5、C【解析】甲的平均成績(jī),甲的成績(jī)的方差;乙的平均成績(jī),乙的成績(jī)的方差.∴,乙比甲成績(jī)穩(wěn)定.故選C.6、D【解析】

根據(jù)等差數(shù)列片段和成等差數(shù)列,可得到,代入求得結(jié)果.【詳解】由等差數(shù)列性質(zhì)知:,,,成等差數(shù)列,即:本題正確選項(xiàng):【點(diǎn)睛】本題考查等差數(shù)列片段和性質(zhì)的應(yīng)用,關(guān)鍵是根據(jù)片段和成等差數(shù)列得到項(xiàng)之間的關(guān)系,屬于基礎(chǔ)題.7、A【解析】

將代數(shù)式與相乘,展開式利用基本不等式求出的最小值,將問(wèn)題轉(zhuǎn)化為解不等式,解出即可.【詳解】由基本不等式得,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,所以,的最小值為.由題意可得,即,解得.因此,實(shí)數(shù)的取值范圍是,故選A.【點(diǎn)睛】本題考查基本不等式的應(yīng)用,考查不等式恒成立問(wèn)題以及一元二次不等式的解法,對(duì)于不等式恒成立問(wèn)題,常轉(zhuǎn)化為最值來(lái)處理,考查計(jì)算能力,屬于中等題.8、B【解析】

根據(jù)的解析式即可求出,進(jìn)而求出的值.【詳解】∵,∴,故,故選B.【點(diǎn)睛】本題主要考查分段函數(shù)的概念,以及已知函數(shù)求值的方法,屬于基礎(chǔ)題.9、C【解析】試題分析:A選項(xiàng),中位數(shù)是84;B選項(xiàng),眾數(shù)是出現(xiàn)最多的數(shù),故是83;C選項(xiàng),平均數(shù)是85,正確;D選項(xiàng),方差是,錯(cuò)誤.考點(diǎn):?莖葉圖的識(shí)別?相關(guān)量的定義10、B【解析】試題分析:由三視圖中的正視圖可知,由一個(gè)面為直角三角形,左視圖和俯視圖可知其它的面為長(zhǎng)方形.綜合可判斷為三棱柱.考點(diǎn):由三視圖還原幾何體.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

由題得圓心在直線上,解方程即得解.【詳解】由題得圓心(1,a)在直線上,所以.故答案為1【點(diǎn)睛】本題主要考查直線和圓的位置關(guān)系,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.12、.【解析】

求得從甲、乙、丙、丁四個(gè)學(xué)生中任選兩人的總數(shù)和甲、乙兩人不在同一單位實(shí)習(xí)的方法數(shù),由古典概型的概率計(jì)算公式可得所求值.【詳解】解:從甲、乙、丙、丁四個(gè)學(xué)生中任選兩人的方法數(shù)為種,甲、乙兩人不在同一單位實(shí)習(xí)的方法數(shù)為種,則甲、乙兩人不在同一單位實(shí)習(xí)的概率為.故答案為:.【點(diǎn)睛】本題主要考查古典概型的概率計(jì)算公式,考查運(yùn)算能力,屬于基礎(chǔ)題.13、【解析】

利用等差中項(xiàng)的性質(zhì)求出的值,再利用等差中項(xiàng)的性質(zhì)求出的值.【詳解】由等差中項(xiàng)的性質(zhì)可得,得,由等差中項(xiàng)的性質(zhì)得,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列中項(xiàng)的計(jì)算,充分利用等差中項(xiàng)的性質(zhì)進(jìn)行計(jì)算是解題的關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.14、【解析】

根據(jù)等比數(shù)列的性質(zhì),可得,即可求解.【詳解】由題意,根據(jù)等比數(shù)列的性質(zhì),可得,解得.故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的性質(zhì)的應(yīng)用,其中解答熟記等比數(shù)列的性質(zhì),準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.15、1【解析】

由題得函數(shù)的周期為解之即得解.【詳解】由題得函數(shù)的周期為.故答案為1【點(diǎn)睛】本題主要考查三角函數(shù)的圖像和性質(zhì),考查三角函數(shù)的周期,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.16、(2,3)【解析】

將直線方程變形為,它表示過(guò)兩直線和的交點(diǎn)的直線系,解方程組,得上述直線恒過(guò)定點(diǎn),故答案為.【方法點(diǎn)睛】本題主要考查待定直線過(guò)定點(diǎn)問(wèn)題.屬于中檔題.探索曲線過(guò)定點(diǎn)的常見方法有兩種:①可設(shè)出曲線方程,然后利用條件建立等量關(guān)系進(jìn)行消元(往往可以化為的形式,根據(jù)求解),借助于曲線系的思想找出定點(diǎn)(直線過(guò)定點(diǎn),也可以根據(jù)直線的各種形式的標(biāo)準(zhǔn)方程找出定點(diǎn)).②從特殊情況入手,先探求定點(diǎn),再證明與變量無(wú)關(guān).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)5(2)(3)【解析】

(1)利用向量坐標(biāo)運(yùn)算法則,先求出向量的坐標(biāo),再求模;(2)利用兩個(gè)向量的數(shù)量積的定義和公式,則可求出與的夾角的余弦值;(3)利用兩個(gè)向量共線的性質(zhì),求出的值.【詳解】(1)向量,,,;(2)設(shè)與的夾角為,∵,,,所以,即與的夾角的余弦值為;(3)由題可得:,∵與為平行向量,∴,解得,即滿足使與為平行向量.【點(diǎn)睛】本題主要考查向量的坐標(biāo)運(yùn)算,涉及向量的模,數(shù)量積,共線等相關(guān)知識(shí),屬于基礎(chǔ)題.18、(1)θ(2)最小正周期為π;單調(diào)遞增區(qū)間為[kπ,kπ],k∈Z【解析】

(1)計(jì)算平面向量的數(shù)量積得出函數(shù)f(x)的解析式,求出f(θ)=3時(shí)θ的值;

(2)根據(jù)函數(shù)f(x)的解析式,求出它的最小正周期和單調(diào)遞增區(qū)間.【詳解】(1)向量(cosx+sinx,1),(sinx,),函數(shù)=sinx(cosx+sinx)sinxcosx+sin2xsin2xcos2x+2=sin(2x)+2,f(θ)=3時(shí),sin(2θ)=1,解得2θ2kπ,k∈Z,即θkπ,k∈Z;又θ∈(0,π),所以θ;(2)函數(shù)f(x)=sin(2x)+2,它的最小正周期為Tπ;令2kπ≤2x2kπ,k∈Z,kπ≤xkπ,k∈Z,所以f(x)的單調(diào)遞增區(qū)間為[kπ,kπ],k∈Z.【點(diǎn)睛】本題考查了平面向量的數(shù)量積計(jì)算問(wèn)題,也考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題.19、(1)(2),【解析】

(1)由正弦定理可得,求得,即可解得角;(2)由余弦定理,列出方程,即可求解.【詳解】(1)由題意知,由正弦定理可得,因?yàn)?,則,所以,即,又由,所以.(2)由(1)知和,,由余弦定理,即,即,解得,所以.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中解答中熟記三角形的正弦、余弦定理,準(zhǔn)確計(jì)算是解答的掛念,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.20、(1)證明見解析(2)【解析】

(1)由已知可得是的兩根,利用韋達(dá)定理,化簡(jiǎn)可得結(jié)論;(2)結(jié)合(1)原不等式可化為,利用一元二次不等式的解法可得結(jié)果.【詳解】(1)∵不等式的解集為∴是的兩根,且∴∴,所以;(2)因?yàn)椋?所以,即,又即,解集為【點(diǎn)睛】本題考查了

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論