版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省名校協(xié)作體高一下數(shù)學期末復習檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.經(jīng)統(tǒng)計某射擊運動員隨機命中的概率可視為,為估計該運動員射擊4次恰好命中3次的概率,現(xiàn)采用隨機模擬的方法,先由計算機產(chǎn)生0到9之間取整數(shù)的隨機數(shù),用0,1,2沒有擊中,用3,4,5,6,7,8,9表示擊中,以4個隨機數(shù)為一組,代表射擊4次的結果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):7525,0293,7140,9857,0347,4373,8638,7815,1417,55500371,6233,2616,8045,6011,3661,9597,7424,7610,4281根據(jù)以上數(shù)據(jù),則可估計該運動員射擊4次恰好命中3次的概率為()A. B. C. D.2.我國古代著名的周髀算經(jīng)中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷長一丈三尺五寸,夏至晷長一尺六寸意思是:一年有二十四個節(jié)氣,每相鄰兩個節(jié)氣之間的日影長度差為分;且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分則“立春”時日影長度為A.分 B.分 C.分 D.分3.一個三角形的三邊長成等比數(shù)列,公比為,則函數(shù)的值域為()A.(,+∞) B.[,+∞) C.(,-1) D.[,-1)4.某程序框圖如圖所示,則該程序運行后輸出的值是()A. B. C. D.5.已知數(shù)列(,)具有性質(zhì):對任意、(),與兩數(shù)中至少有一個是該數(shù)列中的一項,對于命題:①若數(shù)列具有性質(zhì),則;②若數(shù)列,,()具有性質(zhì),則;下列判斷正確的是()A.①和②均為真命題 B.①和②均為假命題C.①為真命題,②為假命題 D.①為假命題,②為真命題6.下列各角中與角終邊相同的是()A. B. C. D.7.若,則下列不等式正確的是()A. B. C. D.8.函數(shù),,的部分圖象如圖所示,則函數(shù)表達式為()A. B.C. D.9.長方體共頂點的三個相鄰面面積分別為,這個長方體的頂點在同一個球面上,則這個球的表面積為()A. B. C. D.10.已知數(shù)列滿足,則()A.2 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,海岸線上有相距海里的兩座燈塔A,B,燈塔B位于燈塔A的正南方向.海上停泊著兩艘輪船,甲船位于燈塔A的北偏西,與A相距海里的D處;乙船位于燈塔B的北偏西方向,與B相距海里的C處,此時乙船與燈塔A之間的距離為海里,兩艘輪船之間的距離為海里.12.給出以下四個結論:①過點,在兩軸上的截距相等的直線方程是;②若是等差數(shù)列的前n項和,則;③在中,若,則是等腰三角形;④已知,,且,則的最大值是2.其中正確的結論是________(寫出所有正確結論的番號).13.在中,角所對的邊分別為,下列命題正確的是_____________.①總存在某個內(nèi)角,使得;②存在某鈍角,有;③若,則的最小角小于.14.數(shù)列的前項和為,若數(shù)列的各項按如下規(guī)律排列:,,,,,,,,,,…,,,…,,…有如下運算和結論:①;②數(shù)列,,,,…是等比數(shù)列;③數(shù)列,,,,…的前項和為;④若存在正整數(shù),使,,則.其中正確的結論是_____.(將你認為正確的結論序號都填上)15.等比數(shù)列中,,則公比____________.16.已知,,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,,.(1)求函數(shù)的最小正周期及單調(diào)遞減區(qū)間;(2)記的內(nèi)角的對邊分別為.若,,求的值.18.已知的三個內(nèi)角、、的對邊分別是、、,的面積,(Ⅰ)求角;(Ⅱ)若中,邊上的高,求的值.19.已知圓心在直線上的圓C經(jīng)過點,且與直線相切.(1)求過點P且被圓C截得的弦長等于4的直線方程;(2)過點P作兩條相異的直線分別與圓C交于A,B,若直線PA,PB的傾斜角互補,試判斷直線AB與OP的位置關系(O為坐標原點),并證明.20.設向量,,其中.(1)若,求的值;(2)若,求的值.21.設為數(shù)列的前項和,.(1)求證:數(shù)列是等比數(shù)列;(2)求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)20組隨機數(shù)可知該運動員射擊4次恰好命中3次的隨機數(shù)共8組,據(jù)此可求出對應的概率.【詳解】由題意,該運動員射擊4次恰好命中3次的隨機數(shù)為:7525,0347,7815,5550,6233,8045,3661,7424,共8組,則該運動員射擊4次恰好命中3次的概率為.故答案為A.【點睛】本題考查了利用隨機模擬數(shù)表法求概率,考查了學生對基礎知識的掌握.2、B【解析】
首先“冬至”時日影長度最大,為1350分,“夏至”時日影長度最小,為160分,即可求出,進而求出立春”時日影長度為.【詳解】解:一年有二十四個節(jié)氣,每相鄰兩個節(jié)氣之間的日影長度差為分,且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分.,解得,“立春”時日影長度為:分.故選B.【點睛】本題考查等差數(shù)列的性質(zhì)等基礎知識,考查運算求解能力,利用等差數(shù)列的性質(zhì)直接求解.3、D【解析】
由題意先設出三邊為則由三邊關系:兩短邊和大于第三邊,分公比大于與公式在小于兩類解出公比的取值范圍,此兩者的并集是函數(shù)的定義域,再由二次函數(shù)的性質(zhì)求出它的值域,選出正確選項.【詳解】解:設三邊:則由三邊關系:兩短邊和大于第三邊,即
(1)當時,,即,解得;
(2)當時,為最大邊,,即,解得,
綜合(1)(2)得:,
又的對稱軸是,故函數(shù)在上是減函數(shù),在上是增函數(shù),
由于時,與時,,
所以函數(shù)的值域為,故選:D.【點睛】本題考查等比數(shù)列的性質(zhì)及二次函數(shù)的值域的求法,解答本題關鍵是熟練掌握等比數(shù)列的性質(zhì),能利用它建立不等式解出公比的取值范圍得出函數(shù)的定義域,熟練掌握二次函數(shù)的性質(zhì)也很重要,由此類題可以看出,扎實的雙基,嫻熟的基礎知識與公式的記憶是解題的知識保障.4、D【解析】
由題意首先確定流程圖的功能,然后結合三角函數(shù)的性質(zhì)求解所要輸出的結果即開即可.【詳解】根據(jù)程序框圖知,該算法的目標是計算和式:.又因為,注意到,故:.故選:D.【點睛】識別、運行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結構、條件結構和循環(huán)結構.(2)要識別、運行程序框圖,理解框圖所解決的實際問題.(3)按照題目的要求完成解答并驗證.5、A【解析】
本題是一種重新定義問題,要我們理解題目中所給的條件,解決后面的問題,把后面的問題挨個驗證.【詳解】解:①若數(shù)列具有性質(zhì),取數(shù)列中最大項,則與兩數(shù)中至少有一個是該數(shù)列中的一項,而不是該數(shù)列中的項,是該數(shù)列中的項,又由,;故①正確;②數(shù)列,,具有性質(zhì),,與至少有一個是該數(shù)列中的一項,且,若是該數(shù)列中的一項,則,,易知不是該數(shù)列的項,.若是該數(shù)列中的一項,則或或,a、若同,b、若,則,與矛盾,c、,則,綜上.故②正確.故選:.【點睛】考查數(shù)列的綜合應用,此題能很好的考查學生的應用知識分析、解決問題的能力,側重于對能力的考查,屬中檔題.6、D【解析】
寫出與終邊相同的角,取值得答案.【詳解】解:與終邊相同的角為,,取,得,與終邊相同.故選:D.【點睛】本題考查終邊相同角的表示法,屬于基礎題.7、C【解析】
根據(jù)不等式性質(zhì),結合特殊值即可比較大小.【詳解】對于A,當,滿足,但不滿足,所以A錯誤;對于B,當時,不滿足,所以B錯誤;對于C,由不等式性質(zhì)“不等式兩邊同時加上或減去同一個數(shù)或式子,不等式符號不變”,所以由可得,因而C正確;對于D,當時,不滿足,所以D錯誤.綜上可知,C為正確選項,故選:C.【點睛】本題考查了不等式大小比較,不等式性質(zhì)及特殊值的簡單應用,屬于基礎題.8、A【解析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數(shù)過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導公式,屬于基礎題.9、A【解析】
設長方體的棱長為,球的半徑為,根據(jù)題意有,再根據(jù)球的直徑是長方體的體對角線求解.【詳解】設長方體的棱長為,球的半徑為,根據(jù)題意,,解得,所以,所以外接球的表面積,故選:A【點睛】本題主要考查了球的組合體問題,還考查了運算求解的能力,屬于基礎題.10、B【解析】
利用數(shù)列的遞推關系式,逐步求解數(shù)列的即可.【詳解】解:數(shù)列滿足,,所以,.故選:B.【點睛】本題主要考查數(shù)列的遞推關系式的應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、5,【解析】
為等邊三角形,所以算出,,再在中根據(jù)余弦定理易得CD的長.【詳解】因為為等邊三角形,所以.在中根據(jù)余弦定理解得.【點睛】此題考查余弦定理的實際應用,關鍵點通過已知條件轉換為數(shù)學模型再通過余弦定理求解即可,屬于較易題目.12、②④【解析】
①中滿足題意的直線還有,②中根據(jù)等差數(shù)列前項和的特點,得到,③中根據(jù)同角三角函數(shù)關系進行化簡計算,從而進行判斷,④中根據(jù)基本不等式進行判斷.【詳解】①中過點,在兩軸上的截距相等的直線還可以過原點,即兩軸上的截距都為,即直線,所以錯誤;②中是等差數(shù)列的前n項和,根據(jù)等差數(shù)列前項和的特點,,是一個不含常數(shù)項的二次式,從而得到,即,所以正確;③中在中,若,則可得,所以可得或,所以可得或,從而得到為直角三角形或等腰三角形,所以錯誤;④中因為,,且,由基本不等式,得到,所以,當且僅當,即時,等號成立.所以,即的最大值是,所以正確.故答案為:②④【點睛】本題考查截距相等的直線的特點,等差數(shù)列前項和的特點,判斷三角形形狀,基本不等式求積的最大值,屬于中檔題.13、①③【解析】
①中,根據(jù)直角三角形、銳角三角形和鈍角三角形分類討論,得出必要一個角在內(nèi),即可判定;②中,利用兩角和的正切公式,化簡得到,根據(jù)鈍角三角形,即可判定;③中,利用向量的運算,得到,由于不共線,得到,再由余弦定理,即可判定.【詳解】由題意,對于①中,在中,當,則,若為直角三角形,則必有一個角在內(nèi);若為銳角三角形,則必有一個內(nèi)角小于等于;若為鈍角三角形,也必有一個角小于內(nèi),所以總存在某個內(nèi)角,使得,所以是正確的;對于②中,在中,由,可得,由為鈍角三角形,所以,所以,所以不正確;對于③中,若,即,即,由于不共線,所以,即,由余弦定理可得,所以最小角小于,所以是正確的.綜上可得,命題正確的是①③.故答案為:①③.【點睛】本題以真假命題為載體,考查了正弦、余弦定理的應用,以及向量的運算及應用,其中解答中熟練應用解三角形的知識和向量的運算進行化簡是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.14、①③④【解析】
根據(jù)題中所給的條件,將數(shù)列的項逐個寫出,可以求得,將數(shù)列的各項求出,可以發(fā)現(xiàn)其為等差數(shù)列,故不是等比數(shù)列,利用求和公式求得結果,結合條件,去挖掘條件,最后得到正確的結果.【詳解】對于①,前24項構成的數(shù)列是,所以,故①正確;對于②,數(shù)列是,可知其為等差數(shù)列,不是等比數(shù)列,故②不正確;對于③,由上邊結論可知是以為首項,以為公比的等比數(shù)列,所以有,故③正確;對于④,由③知,即,解得,且,故④正確;故答案是①③④.【點睛】該題考查的是有關數(shù)列的性質(zhì)以及對應量的運算,解題的思想是觀察數(shù)列的通項公式,理解項與和的關系,認真分析,仔細求解,從而求得結果.15、【解析】
根據(jù)題意得到:,解方程即可.【詳解】由題知:,解得:.故答案為:【點睛】本題主要考查等比數(shù)列的性質(zhì),熟練掌握等比數(shù)列的性質(zhì)為解題的關鍵,屬于簡單題.16、【解析】
直接利用二倍角公式,即可得到本題答案.【詳解】因為,所以,得,由,所以.故答案為:【點睛】本題主要考查利用二倍角公式求值,屬基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)最小正周期為,單調(diào)遞減區(qū)間為;(2)或【解析】
(1)由向量的數(shù)量積的運算公式和三角恒等變換的公式化簡可得,再結合三角函數(shù)的性質(zhì),即可求解.(2)由(1),根據(jù),解得,利用正弦定理,求得,再利用余弦定理列出方程,即可求解.【詳解】(1)由題意,向量,,所以,因為,所以函數(shù)的最小正周期為,令,解得,所以函數(shù)的單調(diào)遞減區(qū)間為.(2)由(1)函數(shù)的解析式為,可得,解得,又由,根據(jù)正弦定理,可得,因為,所以,所以為銳角,所以,由余弦定理可得,可得,即,解得或.【點睛】本題主要考查了向量的數(shù)量積的運算,三角恒等變換的應用,以及正弦定理和余弦定理的應用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關系,熟練掌握定理、合理運用是解本題的關鍵.通常當涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當涉及三邊或兩邊及其夾角時,運用余弦定理求解.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由面積公式推出,代入所給等式可得,求出角C的余弦值從而求得角C;(Ⅱ)首先由求出邊c,再由面積公式代入相應值求出邊b,利用余弦定理即可求出邊a.【詳解】(Ⅰ)由得①于是,即∴又,所以(Ⅱ),由得,將代入中得,解得.【點睛】本題考查余弦定理解三角形,三角形面積公式,屬于基礎題.19、(1)或;(2)平行【解析】
(1)設出圓的圓心為,半徑為,可得圓的標準方程,根據(jù)題意可得,解出即可得出圓的方程,討論過點P的直線斜率存在與否,再根據(jù)點到直線的距離公式即可求解.(2)由題意知,直線PA,PB的傾斜角互補,分類討論兩直線的斜率存在與否,當斜率均存在時,則直線PA的方程為:,直線PB的方程為:,分別與圓C聯(lián)立可得,利用斜率的計算公式與作比較即可.【詳解】(1)根據(jù)題意,不妨設圓C的圓心為,半徑為,則圓C,由圓C經(jīng)過點,且與直線相切,則,解得,故圓C的方程為:,所以點在圓上,過點P且被圓C截得的弦長等于4的直線,當直線的斜率不存在時,直線為:,滿足題意;當直線的斜率存在時,設直線的斜率為,直線方程為:,故,解得,故直線方程為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 軸承行業(yè)安全培訓課件下載
- 四年級下冊《奧運中的數(shù)學》教學設計
- 色彩肌膚護理的美麗秘訣分享
- 公司創(chuàng)新激勵機制制度
- 超市課件培訓
- 2025-2030中國蜜蜂養(yǎng)殖與蜂產(chǎn)品加工需求預測與競爭態(tài)勢剖析研究報告
- 深色簡約風酷炫未來科技年會
- 分娩過程兒童科普
- 2025-2030細胞治療產(chǎn)品冷鏈物流體系建設與成本優(yōu)化分析報告
- 2025-2030細胞治療產(chǎn)業(yè)化瓶頸突破與臨床試驗加速路徑評估報告
- 一例伴精神病性癥狀重度抑郁發(fā)作患者的護理查房
- 成都天府新區(qū)施工圍擋設置導則方案文本
- 職業(yè)道德與法治知識點總結2025屆中職高考復習高教版
- DB37-T 5318-2025 有機保溫板薄抹灰外墻外保溫系統(tǒng)應用技術標準
- 大模型備案-落實算法安全主體責任基本情況
- (高清版)DB36∕T 1919-2023 水質(zhì) 無機元素的現(xiàn)場快速測定 便攜式單波長激發(fā)-能量色散X射線熒光光譜法
- 江蘇省常州市2024-2025學年七年級上學期期末道德與法治試卷(含答案)
- 四川省南充市2024-2025學年高一上學期期末質(zhì)量檢測語文試題(含答案)
- 2024數(shù)控機床主軸可靠性加速試驗技術規(guī)范
- 甲烷活化機制研究
- 質(zhì)量信得過班組培訓課件
評論
0/150
提交評論