2023-2024學(xué)年成都市樹德實(shí)驗(yàn)中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第1頁
2023-2024學(xué)年成都市樹德實(shí)驗(yàn)中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第2頁
2023-2024學(xué)年成都市樹德實(shí)驗(yàn)中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第3頁
2023-2024學(xué)年成都市樹德實(shí)驗(yàn)中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第4頁
2023-2024學(xué)年成都市樹德實(shí)驗(yàn)中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年成都市樹德實(shí)驗(yàn)中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.同時擲兩個骰子,向上的點(diǎn)數(shù)之和是的概率是()A. B. C. D.2.某單位共有老、中、青職工430人,其中有青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()A.9 B.18 C.27 D.363.已知等比數(shù)列,若,則()A. B. C.4 D.4.已知向量,且,則m=()A.?8 B.?6C.6 D.85.已知,,,若,則等于()A. B. C. D.6.一組數(shù)平均數(shù)是,方差是,則另一組數(shù),的平均數(shù)和方差分別是()A. B.C. D.7.在中,角所對的邊分別為,若,則此三角形()A.無解 B.有一解 C.有兩解 D.解的個數(shù)不確定8.若函數(shù)在一個周期內(nèi)的圖象如圖所示,且在軸上的截距為,分別是這段圖象的最高點(diǎn)和最低點(diǎn),則在方向上的投影為()A. B. C. D.9.已知點(diǎn)、、在圓上運(yùn)動,且,若點(diǎn)的坐標(biāo)為,的最大值為()A. B. C. D.10.甲、乙兩名運(yùn)動員分別進(jìn)行了5次射擊訓(xùn)練,成績?nèi)缦拢杭祝?,7,8,8,1;乙:8,9,9,9,1.若甲、乙兩名運(yùn)動員的平均成績分別用,表示,方差分別用,表示,則()A., B.,C., D.,二、填空題:本大題共6小題,每小題5分,共30分。11.某四棱錐的三視圖如圖所示,如果網(wǎng)格紙上小正方形的邊長為1,那么該四棱錐最長棱的棱長為.12.函數(shù)可由y=sin2x向左平移___________個單位得到.13.在等比數(shù)列中,,的值為________14.一個幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為.15.已知圓錐的頂點(diǎn)為,母線,互相垂直,與圓錐底面所成角為,若的面積為,則該圓錐的體積為__________.16.在正方體中,是棱的中點(diǎn),則異面直線與所成角的余弦值為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)當(dāng)時,,求的值;(2)令,若對任意都有恒成立,求的最大值.18.已知函數(shù),(1)求的值;(2)求的單調(diào)遞增區(qū)間.19.為了解某城市居民的月平均用電量情況,隨機(jī)抽查了該城市100戶居民的月平均用電量(單位:度),得到頻率分布直方圖(如圖所示).數(shù)據(jù)的分組依次為、、、、、、.(1)求頻率分布直方圖中的值;(2)求該城市所有居民月平均用電量的眾數(shù)和中位數(shù)的估計值;(3)在月平均用電量為的四組用戶中,采用分層抽樣的方法抽取戶居民,則應(yīng)從月用電量在居民中抽取多少戶?20.已知函數(shù)(1)求函數(shù)的定義域:(2)求函數(shù)的單調(diào)遞減區(qū)間:(3)求函數(shù)了在區(qū)間上的最大值和最小值.21.如圖,在正方體中,是的中點(diǎn).(1)求證:平面;(2)求證:平面平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

分別計算出所有可能的結(jié)果和點(diǎn)數(shù)之和為的所有結(jié)果,根據(jù)古典概型概率公式求得結(jié)果.【詳解】同時擲兩個骰子,共有種結(jié)果其中點(diǎn)數(shù)之和是的共有:,共種結(jié)果點(diǎn)數(shù)之和是的概率為:本題正確選項(xiàng):【點(diǎn)睛】本題考查古典概型問題中的概率的計算,關(guān)鍵是能夠準(zhǔn)確計算出總體基本事件個數(shù)和符合題意的基本事件個數(shù),屬于基礎(chǔ)題.2、B【解析】試題分析:根據(jù)條件中職工總數(shù)和青年職工人數(shù),以及中年和老年職工的關(guān)系列出方程,解出老年職工的人數(shù),根據(jù)青年職工在樣本中的個數(shù),算出每個個體被抽到的概率,用概率乘以老年職工的個數(shù),得到結(jié)果.設(shè)老年職工有x人,中年職工人數(shù)是老年職工人數(shù)的2倍,則中年職工有2x,∵x+2x+160=430,∴x=90,即由比例可得該單位老年職工共有90人,∵在抽取的樣本中有青年職工32人,∴每個個體被抽到的概率是用分層抽樣的比例應(yīng)抽取×90=18人.故選B.考點(diǎn):分層抽樣點(diǎn)評:本題是一個分層抽樣問題,容易出錯的是不理解分層抽樣的含義或與其它混淆.抽樣方法是數(shù)學(xué)中的一個小知識點(diǎn),但一般不難,故也是一個重要的得分點(diǎn),不容錯過3、D【解析】

利用等比數(shù)列的通項(xiàng)公式求得公比,進(jìn)而求得的值.【詳解】∵,∴.故選:D.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式,考查運(yùn)算求解能力,屬于基礎(chǔ)題.4、D【解析】

由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.5、A【解析】

根據(jù)向量的坐標(biāo)運(yùn)算法則,依據(jù)題意列出等式求解.【詳解】由題知:,,,因?yàn)?所以,故,故選:A.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.6、B【解析】

直接利用公式:平均值方差為,則的平均值和方差為:得到答案.【詳解】平均數(shù)是,方差是,的平均數(shù)為:方差為:故答案選B【點(diǎn)睛】本題考查了平均數(shù)和方差的計算:平均數(shù)是,方差是,則的平均值和方差為:.7、C【解析】

利用正弦定理求,與比較的大小,判斷B能否取相應(yīng)的銳角或鈍角.【詳解】由及正弦定理,得,,B可取銳角;當(dāng)B為鈍角時,,由正弦函數(shù)在遞減,,可取.故選C.【點(diǎn)睛】本題考查正弦定理,解三角形中何時無解、一解、兩解的條件判斷,屬于中檔題.8、D【解析】

根據(jù)圖象求出函數(shù)的解析式,然后求出點(diǎn)的坐標(biāo),進(jìn)而可得所求結(jié)果.【詳解】根據(jù)函數(shù)在一個周期內(nèi)的圖象,可得,∴.再根據(jù)五點(diǎn)法作圖可得,∴,∴函數(shù)的解析式為.∵該函數(shù)在y軸上的截距為,∴,∴,故函數(shù)的解析式為.∴,∴,又,∴向量在方向上的投影為.故選D.【點(diǎn)睛】解答本題的關(guān)鍵有兩個:一是正確求出函數(shù)的解析式,進(jìn)而得到兩點(diǎn)的坐標(biāo),此處要靈活運(yùn)用“五點(diǎn)法”求出的值;二是注意一個向量在另一個向量方向上的投影的概念,屬于基礎(chǔ)題.9、C【解析】

由題意可知為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標(biāo)原點(diǎn)),然后利用平面向量模的三角不等式以及圓的幾何性質(zhì)可得出的最大值.【詳解】如下圖所示:,為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標(biāo)原點(diǎn)),由平面向量模的三角不等式可得,當(dāng)且僅當(dāng)點(diǎn)的坐標(biāo)為時,等號成立,因此,的最大值為.故選:C.【點(diǎn)睛】本題考查向量模的最值問題,涉及平面向量模的三角不等式以及圓的幾何性質(zhì)的應(yīng)用,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.10、D【解析】

分別計算出他們的平均數(shù)和方差,比較即得解.【詳解】由題意可得,,,.故,.故選D【點(diǎn)睛】本題主要考查平均數(shù)和方差的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先通過拔高法還原三視圖為一個四棱錐,再根據(jù)圖像找到最長棱計算即可?!驹斀狻扛鶕?jù)拔高法還原三視圖,可得斜棱長最長,所以斜棱長為?!军c(diǎn)睛】此題考查簡單三視圖還原,關(guān)鍵點(diǎn)通過拔高法將三視圖還原易求解,屬于較易題目。12、【解析】

將轉(zhuǎn)化為,再利用平移公式得到答案.【詳解】向左平移故答案為【點(diǎn)睛】本題考查三角函數(shù)圖像的平移,將正弦函數(shù)化為余弦函數(shù)是解題的關(guān)鍵,也可以將余弦函數(shù)化為正弦函數(shù)求解.13、【解析】

根據(jù)等比數(shù)列的性質(zhì),可得,即可求解.【詳解】由題意,根據(jù)等比數(shù)列的性質(zhì),可得,解得.故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的性質(zhì)的應(yīng)用,其中解答熟記等比數(shù)列的性質(zhì),準(zhǔn)確計算是解答的關(guān)鍵,著重考查了計算能力,屬于基礎(chǔ)題.14、【解析】該幾何體是由兩個高為1的圓錐與一個高為2的圓柱組合而成,所以該幾何體的體積為.考點(diǎn):本題主要考查三視圖及幾何體體積的計算.15、8π【解析】分析:作出示意圖,根據(jù)條件分別求出圓錐的母線,高,底面圓半徑的長,代入公式計算即可.詳解:如下圖所示,又,解得,所以,所以該圓錐的體積為.點(diǎn)睛:此題為填空題的壓軸題,實(shí)際上并不難,關(guān)鍵在于根據(jù)題意作出相應(yīng)圖形,利用平面幾何知識求解相應(yīng)線段長,代入圓錐體積公式即可.16、【解析】

假設(shè)正方體棱長,根據(jù)//,得到異面直線與所成角,計算,可得結(jié)果.【詳解】假設(shè)正方體棱長為1,因?yàn)?/,所以異面直線與所成角即與所成角則角為如圖,所以故答案為:【點(diǎn)睛】本題考查異面直線所成的角,屬基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)根據(jù)得,得或,結(jié)合取值范圍求解;(2)結(jié)合換元法處理二次不等式恒成立求參數(shù)的取值范圍.【詳解】(1),即,即有,所以或,即或由于,,所以;(2),令,對任意都有恒成立,即對恒成立,只需,解得:,所以的最大值為.【點(diǎn)睛】此題考查根據(jù)三角函數(shù)值相等求自變量取值的關(guān)系,利用換元法轉(zhuǎn)化為二次函數(shù)處理不等式問題,根據(jù)不等式恒成立求參數(shù)的取值范圍,涉及根的分布的問題.18、(1)(2)【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,(1)將代入,利用特殊角的三角函數(shù)可得的值;(2)利用正弦函數(shù)的單調(diào)性解不等式,可得到函數(shù)的遞增區(qū)間.詳解:(Ⅰ)===(Ⅱ)由題可得,函數(shù)的單調(diào)遞增區(qū)間是點(diǎn)睛:本題主要考查三角函數(shù)的單調(diào)性、三角函數(shù)的恒等變換,屬于中檔題.函數(shù)的單調(diào)區(qū)間的求法:(1)代換法:①若,把看作是一個整體,由求得函數(shù)的減區(qū)間,求得增區(qū)間;②若,則利用誘導(dǎo)公式先將的符號化為正,再利用①的方法,或根據(jù)復(fù)合函數(shù)的單調(diào)性規(guī)律進(jìn)行求解;(2)圖象法:畫出三角函數(shù)圖象,利用圖象求函數(shù)的單調(diào)區(qū)間.19、(1);(2)眾數(shù)為度,中位數(shù)為度;(3)戶.【解析】

(1)利用頻率分布直方圖中所有矩形面積之和為可求得的值;(2)利用頻率分布直方圖中最高矩形底邊的中點(diǎn)值為眾數(shù),可得出該城市所有居民月平均用電量的眾數(shù),利用中位數(shù)左邊的矩形面積之和為可求得該城市所有居民月平均用電量的中位數(shù);(3)計算出月用電量在的用戶在月平均用電量為的用戶中所占的比例,乘以可得出結(jié)果.【詳解】(1)因?yàn)?,所以;?)月平均用電量眾數(shù)的估計值為度,,故中位數(shù),所以,,解得,故月平均用電量中位數(shù)的估計值為度;(3)月均用電量在、、、的用戶分別為戶、戶、戶、戶,其中,月均用電量為的用戶在月平均用電量為的用戶中所占的比例為,所以在月均用電量為的用戶中應(yīng)抽?。☉簦?【點(diǎn)睛】本題考查利用頻率分布直方圖求參數(shù)、中位數(shù)、眾數(shù),同時也考查了利用分層抽樣求樣本容量,考查計算能力,屬于基礎(chǔ)題.20、(1).(2),.(3),.【解析】

(1)根據(jù)分母不等于求出函數(shù)的定義域.(2)化簡函數(shù)的表達(dá)式,利用正弦函數(shù)的單調(diào)減區(qū)間求解函數(shù)的單調(diào)減區(qū)間即可.(3)通過滿足求出相位的范圍,利用正弦函數(shù)的值域,求解函數(shù)的最大值和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論