廣東省茂名市高州市石鼓中學2023-2024學年高一數(shù)學第二學期期末復習檢測模擬試題含解析_第1頁
廣東省茂名市高州市石鼓中學2023-2024學年高一數(shù)學第二學期期末復習檢測模擬試題含解析_第2頁
廣東省茂名市高州市石鼓中學2023-2024學年高一數(shù)學第二學期期末復習檢測模擬試題含解析_第3頁
廣東省茂名市高州市石鼓中學2023-2024學年高一數(shù)學第二學期期末復習檢測模擬試題含解析_第4頁
廣東省茂名市高州市石鼓中學2023-2024學年高一數(shù)學第二學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省茂名市高州市石鼓中學2023-2024學年高一數(shù)學第二學期期末復習檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列的前項和,若,則()A.25 B.39 C.45 D.542.如圖,B是AC上一點,分別以AB,BC,AC為直徑作半圓,從B作BD⊥AC,與半圓相交于D,AC=6,BD=22A.29 B.13 C.43.下列結(jié)論:①;②;③,;④,,其中正確結(jié)論的個數(shù)是().A.1 B.2 C.3 D.44.下列函數(shù)的最小值為的是()A. B.C. D.5.若,則的概率為()A. B. C. D.6.若非零實數(shù)滿足,則下列不等式成立的是()A. B. C. D.7.演講比賽共有9位評委分別給出某選手的原始評分,評定該選手的成績時,從9個原始評分中去掉1個最高分、1個最低分,得到7個有效評分.7個有效評分與9個原始評分相比,不變的數(shù)字特征是A.中位數(shù) B.平均數(shù)C.方差 D.極差8.已知等比數(shù)列的前項和為,若,則()A. B. C.5 D.69.下列命題中正確的是()A.相等的角終邊必相同 B.終邊相同的角必相等C.終邊落在第一象限的角必是銳角 D.不相等的角其終邊必不相同10.如圖,在直三棱柱中,,,,則異面直線與所成角的余弦值是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.正六棱柱各棱長均為,則一動點從出發(fā)沿表面移動到時的最短路程為__________.12.在△ABC中,a、b、c分別為角A、B、C的對邊,若b·cosC=c·cosB,且cosA=,則cosB的值為_____.13.已知,,若,則的取值范圍是__________.14.如果是奇函數(shù),則=.15.設函數(shù)滿足,當時,,則=________.16.在數(shù)列中,,,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在四棱錐中,,.(1)若點為的中點,求證:平面;(2)當平面平面時,求二面角的余弦值.18.已知等比數(shù)列滿足,,等差數(shù)列滿足,,求數(shù)列的前項和.19.已知數(shù)列滿足:.(1)求證:數(shù)列為等差數(shù)列,并求;(2)記,求數(shù)列的前項和.20.已知向量,的夾角為,且,.(1)求;(2)求.21.某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應數(shù)據(jù):x24568y3040605070(1)若廣告費與銷售額具有相關(guān)關(guān)系,求回歸直線方程;(2)在已有的五組數(shù)據(jù)中任意抽取兩組,求兩組數(shù)據(jù)其預測值與實際值之差的絕對值都不超過5的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

設等差數(shù)列的公差為,從而根據(jù),即可求出,這樣根據(jù)等差數(shù)列的前項和公式即可求出.【詳解】解:設等差數(shù)列的公差為,則由,得:,,,故選:A.【點睛】本題主要考查等差數(shù)列的通項公式和等差數(shù)列的前項和公式,屬于基礎(chǔ)題.2、C【解析】

求得陰影部分的面積和最大的半圓的面積,再根據(jù)面積型幾何概型的概率計算公式求解.【詳解】連接AD,CD,可知△ACD是直角三角形,又BD⊥AC,所以BDAB=x(0<x<6),則有8=x(6-x),得x=2,所以AB=2,?BC=4,由此可得圖中陰影部分的面積等于π×3【點睛】本題考查了與面積有關(guān)的幾何概型的概率的求法,當試驗結(jié)果所構(gòu)成的區(qū)域可用面積表示,用面積比計算概率.涉及了初中學習的射影定理,也可通過證明相似,求解各線段的長.3、A【解析】

根據(jù)不等式性質(zhì),結(jié)合特殊值法即可判斷各選項.【詳解】對于①,若,滿足,但不成立,所以A錯誤;對于②,若,滿足,但不成立,所以B錯誤;對于③,,而,由不等式性質(zhì)可得,所以③正確;對于④,若滿足,但不成立,所以④錯誤;綜上可知,正確的為③,有1個正確;故選:A.【點睛】本題考查了不等式性質(zhì)應用,根據(jù)不等式關(guān)系比較大小,屬于基礎(chǔ)題.4、C【解析】分析:利用基本不等式的性質(zhì)即可判斷出正誤,注意“一正二定三相等”的使用法則.詳解:A.時顯然不滿足條件;B.其最小值大于1.D.令因此不正確.故選C.點睛:本題考查基本不等式,考查通過給變量取特殊值,舉反例來說明某個命題不正確,是一種簡單有效的方法.5、C【解析】

由,得,當時,即可求出的范圍,根據(jù)幾何概型的公式,即可求解.【詳解】由,得,當,即當時,,所以的概率為.【點睛】本題考查幾何概型的公式,屬基礎(chǔ)題6、C【解析】

對每一個不等式逐一分析判斷得解.【詳解】A,不一定小于0,所以該選項不一定成立;B,如果a<0,b<0時,不成立,所以該選項不一定成立;C,,所以,所以該不等式成立;D,不一定小于0,所以該選項不一定成立.故選:C【點睛】本題主要考查不等式性質(zhì)和比較法比較實數(shù)的大小,意在考查學生對這些知識的理解掌握水平和分析推理能力.7、A【解析】

可不用動筆,直接得到答案,亦可采用特殊數(shù)據(jù),特值法篩選答案.【詳解】設9位評委評分按從小到大排列為.則①原始中位數(shù)為,去掉最低分,最高分,后剩余,中位數(shù)仍為,A正確.②原始平均數(shù),后來平均數(shù)平均數(shù)受極端值影響較大,與不一定相同,B不正確③由②易知,C不正確.④原極差,后來極差可能相等可能變小,D不正確.【點睛】本題旨在考查學生對中位數(shù)、平均數(shù)、方差、極差本質(zhì)的理解.8、A【解析】

先通分,再利用等比數(shù)列的性質(zhì)求和即可?!驹斀狻浚蔬xA.【點睛】本題考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題。9、A【解析】

根據(jù)終邊相同的角的的概念可得正確的選項.【詳解】終邊相同的角滿足,故B、D錯誤,終邊落在第一象限的角可能是負角,故C錯誤,相等的角的終邊必定相同,故A正確.故選:A.【點睛】本題考查終邊相同的角,注意終邊相同時,有,本題屬于基礎(chǔ)題.10、D【解析】連結(jié),∵,

∴是異面直線與所成角(或所成角的補角),

∵在直三棱柱中,,,,

∴,,,,

∴,

∴異面直線與所成角的余弦值為,故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)可能走的路徑,將所給的正六棱柱展開,利用平面幾何知識求解比較.【詳解】將所給的正六棱柱下圖(2)表面按圖(1)展開.,,,故從A沿正側(cè)面和上表面到D1的路程最短為故答案為:.【點睛】本題主要考查了空間幾何體展形圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.12、【解析】

利用余弦定理表示出與,代入已知等式中,整理得到,再利用余弦定理表示出,將及的值代入用表示出,將表示出的與代入中計算,即可求出值.【詳解】由題意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,則,故答案為.【點睛】本題考查了解三角形的綜合應用,高考中經(jīng)常將三角變換與解三角形知識綜合起來命題,如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理實現(xiàn)邊角互化;以上特征都不明顯時,則要考慮兩個定理都有可能用到.13、【解析】數(shù)形結(jié)合法,注意y=,y≠0等價于x2+y2=9(y>0),它表示的圖形是圓x2+y2=9在x軸之上的部分(如圖所示).結(jié)合圖形不難求得,當-3<b≤3時,直線y=x+b與半圓x2+y2=9(y>0)有公共點.14、-2【解析】試題分析:∵,∴,∴,∴=-2考點:本題考查了三角函數(shù)的性質(zhì)點評:對于定義域為R的奇函數(shù)恒有f(0)=0.利用此結(jié)論可解決此類問題15、【解析】

由已知得f()=f()+sin=f()+sin+sin=f()+sin+sin+sin,由此能求出結(jié)果.【詳解】∵函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx,當0≤x<π時,f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案為:.【點睛】本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.16、【解析】

由遞推公式可以求出,可以歸納出數(shù)列的周期,從而可得到答案.【詳解】由,,.,可推測數(shù)列是以3為周期的周期數(shù)列.所以。故答案為:【點睛】本題考查數(shù)量的遞推公式同時考查數(shù)列的周期性,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】

(I)結(jié)合平面與平面平行判定,得到平面BEM平行平面PAD,結(jié)合平面與平面性質(zhì),證明結(jié)論.(II)建立空間坐標系,分別計算平面PCD和平面PDB的法向量,結(jié)合向量數(shù)量積公式,計算余弦值,即可.【詳解】(Ⅰ)取的中點為,連結(jié),.由已知得,為等邊三角形,.∵,,∴,∴,∴.又∵平面,平面,∴∥平面.∵為的中點,為的中點,∴∥.又∵平面,平面,∴∥平面.∵,∴平面∥平面.∵平面,∴∥平面.(Ⅱ)連結(jié),交于點,連結(jié),由對稱性知,為的中點,且,.∵平面平面,,∴平面,,.以為坐標原點,的方向為軸正方向,建立空間直角坐標系.則(0,,0),(3,0,0),(0,0,1).易知平面的一個法向量為.設平面的法向量為,則,,∴,∵,,∴.令,得,∴,∴.設二面角的大小為,則.【點睛】本道題考查了平面與平面平行判定和性質(zhì),考查了空間向量數(shù)量積公式,關(guān)鍵建立空間坐標系,難度偏難.18、【解析】

由等比數(shù)列易得公比和,進而可得等差數(shù)列的首項和公差,代入求和公式計算可得.【詳解】解:∵等比數(shù)列滿足,,

∴公比,

,

∴等差數(shù)列中,

∴公差,

∴數(shù)列的前項和.【點睛】本題考查等差數(shù)列的求和公式,涉及等比數(shù)列的通項公式,求出數(shù)列的首項和公差是解決問題的關(guān)鍵,屬基礎(chǔ)題.19、(1)證明見解析,;(2).【解析】

(1)由等差數(shù)列的定義證明,利用等差數(shù)列通項公式可求得;(2)用裂項相消法求數(shù)列的和.【詳解】(1)證明:∵,∴,即,∴是等差數(shù)列,公差為,,∴,∴;(2)由(1),所以.【點睛】本題考查用定義證明等差數(shù)列,考查等差數(shù)列的通項公式,考查用裂項相消法求數(shù)列的前項和.掌握等差數(shù)的定義是解題關(guān)鍵.數(shù)列求和時除掌握等比數(shù)列的求和公式外還要掌握數(shù)列的幾種求和方法:裂項相消法,錯位相減法,分組(并項)求和法,倒序相加法等等.20、(1)1;(2)【解析】

(1)利用向量數(shù)量積的定義求解;(2)先求模長的平方,再進行開方可得.【詳解】(1)?=||||cos60°=2×1×=1;(2)|+|2=(+)2=+2?+=4+2×1+1=7.所以|+|=.【點睛】本題主要考查平面向量數(shù)量積的定義及向量模長的求解,一般地,求解向量模長時,先把模長平方,化為數(shù)量積運算進行求解.21、(1);(2).【解析】

(1)首先求出x,y的平均數(shù),利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論