江蘇省揚州市示范初中2024年數(shù)學高一下期末統(tǒng)考模擬試題含解析_第1頁
江蘇省揚州市示范初中2024年數(shù)學高一下期末統(tǒng)考模擬試題含解析_第2頁
江蘇省揚州市示范初中2024年數(shù)學高一下期末統(tǒng)考模擬試題含解析_第3頁
江蘇省揚州市示范初中2024年數(shù)學高一下期末統(tǒng)考模擬試題含解析_第4頁
江蘇省揚州市示范初中2024年數(shù)學高一下期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省揚州市示范初中2024年數(shù)學高一下期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在△ABC中,,,.的值為()A. B. C. D.2.函數(shù)的單調(diào)增區(qū)間是()A. B.C. D.3.若且,則下列四個不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④4.若,,則()A. B. C. D.5.設a,b,c表示三條不同的直線,M表示平面,給出下列四個命題:其中正確命題的個數(shù)有()①若a//M,b//M,則a//b;②若b?M,a//b,則a//M;③若a⊥c,b⊥c,則a//b;④若a//c,b//c,則a//b.A.0個 B.1個 C.2個 D.3個6.設是兩條不同的直線,是兩個不同的平面,則下列命題不正確的是()A.若,則 B.若,則C.若,則 D.若,則7.用3種不同顏色給2個矩形隨機涂色,每個矩形涂且只涂種顏色,則2個矩形顏色不同的概率為()A.13 B.12 C.28.已知向量,的夾角為,且,,則與的夾角等于A. B. C. D.9.已知角滿足,,且,,則的值為()A. B. C. D.10.在中,內(nèi)角所對的邊分別是,若,則角的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若向量與的夾角為,與的夾角為,則______.12.若甲、乙、丙三人隨機地站成一排,則甲、乙兩人相鄰而站的概率為_________.13.已知函數(shù)的最小正周期為,且的圖象過點,則方程所有解的和為________.14.對于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,則x的取值范圍是________________.15.在邊長為2的正三角形ABC內(nèi)任取一點P,則使點P到三個頂點的距離至少有一個小于1的概率是________.16.已知直線平面,,那么在平面內(nèi)過點P與直線m平行的直線有________條.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓M的圓心在直線上,直線與圓M相切于點.(1)求圓M的標準方程;(2)已知過點且斜率為的直線l與圓M交于不同的兩點A、B,而且滿足,求直線l的方程.18.已知(1)求函數(shù)的單調(diào)遞減區(qū)間:(2)已知,求的值域19.已知單調(diào)遞減數(shù)列的前項和為,,且,則_____.20.已知函數(shù)滿足.(1)若,對任意都有,求的取值范圍;(2)是否存在實數(shù),,使得不等式對一切實數(shù)恒成立?若存在,請求出,,使;若不存在,請說明理由.21.如圖,在三棱柱中,平面平面,,,為棱的中點.(1)證明:;(2)求三棱柱的高.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由正弦定理列方程求解?!驹斀狻坑烧叶ɡ砜傻茫?,所以,解得:.故選:B【點睛】本題主要考查了正弦定理,屬于基礎題。2、D【解析】

化簡函數(shù)可得y=2sin(2x),把“2x”作為一個整體,再根據(jù)正弦函數(shù)的單調(diào)增區(qū)間,求出x的范圍,即是所求函數(shù)的增區(qū)間.【詳解】,由2kπ≤2x2kπ得,kπx≤kπ(k∈z),∴函數(shù)的單調(diào)增區(qū)間是[kπ,kπ](k∈z),故選D.【點睛】本題考查了正弦函數(shù)的單調(diào)性應用,一般的做法是利用整體思想,根據(jù)正弦函數(shù)(余弦函數(shù))的性質(zhì)進行求解.3、C【解析】

根據(jù)且,可得,,且,,根據(jù)不等式的性質(zhì)可逐一作出判斷.【詳解】由且,可得,∴,且,,由此可得①當a=0時,不成立,②由,,則成立,③由,,可得成立,④由,若,則不成立,因此,一定成立的是②③,故選:C.【點睛】本題考查不等式的基本性質(zhì)的應用,屬于基礎題.4、D【解析】

利用集合的補集的定義求出的補集;利用子集的定義判斷出.【詳解】解:,,,,故選:.【點睛】本題考查利用集合的交集、補集、并集定義求交集、補集、并集;利用集合包含關系的定義判斷集合的包含關系.5、B【解析】

由空間直線的位置關系及空間直線與平面的位置關系逐一判斷即可得解.【詳解】解:對于①,若a//M,b//M,則a//b或與相交或與異面,即①錯誤;對于②,若b?M,a//b,則a//M或a?M,即②錯誤;對于③,若a⊥c,b⊥c,則a//b或與相交或與異面,即③錯誤;對于④,若a//c,b//c,由空間直線平行的傳遞性可得a//b,即④正確,即正確命題的個數(shù)有1個,故選:B.【點睛】本題考查了空間直線的位置關系,重點考查了空間直線與平面的位置關系,屬基礎題.6、D【解析】

對于A,利用線面平行的判定可得A正確.對于B,利用線面垂直的性質(zhì)可得B正確.對于C,利用面面垂直的判定可得C正確.根據(jù)平面與平面的位置關系即可判斷D不正確.【詳解】對于A,根據(jù)平面外的一條直線與平面內(nèi)的一條直線平行,則這條直線平行于這個平面,可判定A正確.對于B,根據(jù)垂直于同一個平面的兩條直線平行,判定B正確.對于C,根據(jù)一個平面過另一個平面的垂線,則這兩個平面垂直,可判定C正確.對于D,若,則或相交,所以D不正確.故選:D【點睛】本題主要考查了線面平行和面面垂直的判定,同時考查了線面垂直的性質(zhì),屬于中檔題.7、C【解析】

由古典概型及概率計算公式得2個矩形顏色不同的概率為69【詳解】用3種不同顏色給2個矩形隨機涂色,每個矩形涂且只涂1種顏色,共32則2個矩形顏色不同共A3即2個矩形顏色不同的概率為69故選:C.【點睛】本題考查了古典概型及概率計算公式,屬于基礎題.8、C【解析】

根據(jù)條件即可求出,從而可求出,,,然后可設與的夾角為,從而可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】,;,,;設與的夾角為,則;又,,故選.【點睛】本題主要考查向量數(shù)量積的定義運用,向量的模的求法,以及利用數(shù)量積求向量夾角.9、D【解析】

根據(jù)角度范圍先計算和,再通過展開得到答案.【詳解】,,故答案選D【點睛】本題考查了三角函數(shù)恒等變換,將是解題的關鍵.10、C【解析】

利用正弦定理,求得,再利用余弦定理,求得,即可求解.【詳解】在,因為,由正弦定理可化簡得,即,由余弦定理得,因為,所以,故選C.【點睛】本題主要考查了正弦定理、余弦定理的應用,其中在解有關三角形的題目時,要有意識地考慮用哪個定理更合適,要抓住能夠利用某個定理的信息.一般地,如果式子中含有角的余弦或邊的二次式時,要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時,則考慮用正弦定理,著重考查了運算與求解能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)向量平行四邊形法則作出圖形,然后在三角形中利用正弦定理分析.【詳解】如圖所示,,,所以在中有:,則,故.【點睛】本題考查向量的平行四邊形法則的運用,難度一般.在運用平行四邊形法則時候,可以適當將其拆分為三角形,利用解三角形中的一些方法去解決問題.12、【解析】記甲、乙兩人相鄰而站為事件A甲、乙、丙三人隨機地站成一排的所有排法有=6,則甲、乙兩人相鄰而站的戰(zhàn)法有=4種站法∴=13、【解析】

由周期求出,由圖象的所過點的坐標求得,【詳解】由題意,又,且,∴,,由得或,又,,∴或,或,兩根之和為.故答案為:.【點睛】本題考查求三角函數(shù)的解析式,考查解三角方程.掌握正切函數(shù)的性質(zhì)是解題關鍵.14、(-∞,-1)∪(3,+∞)【解析】不等式可化為m(x-1)+x2-4x+3>0在0≤m≤4時恒成立.令f(m)=m(x-1)+x2-4x+3.則??即x<-1或x>3.故答案為(-∞,-1)∪(3,+∞)15、【解析】以A,B,C為圓心,以1為半徑作圓,與△ABC交出三個扇形,當P落在其內(nèi)時符合要求,∴P==.16、1【解析】

利用線面平行的性質(zhì)定理來進行解答.【詳解】過直線與點可確定一個平面,由于為公共點,所以兩平面相交,不妨設交線為,因為直線平面,所以,其它過點的直線都與相交,所以與也不會平行,所以過點且平行于的直線只有一條,在平面內(nèi),故答案為:1.【點睛】本題考查線面平行的性質(zhì)定理,是基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】

(1)設圓心坐標為,由圓的性質(zhì)可得,再求解即可;(2)設,,則等價于,再利用韋達定理求解即可.【詳解】解:(1)由圓M的圓心在直線上,設圓心坐標為,又直線與圓M相切于點,則,解得:,即圓心坐標,半徑,即圓M的標準方程為;(2)由題意可得直線l的方程為,聯(lián)立,消整理可得,則,即,又,則恒成立,設,,則由題意有,則,,又,則,則,即,整理得,解得或,即直線l的方程為或,即或.【點睛】本題考查了圓的標準方程的求法,重點考查了直線與圓的位置關系,屬中檔題.18、(1)();(2)【解析】

(1)將三角函數(shù)化簡為,再求函數(shù)的單調(diào)減區(qū)間.(2)根據(jù)得到,得到最后得到答案.【詳解】(1),令解得:可得函數(shù)的單調(diào)遞減區(qū)間為:();(2)的值域為【點睛】本題考查了三角函數(shù)的單調(diào)區(qū)間和值域,將三角函數(shù)化簡為標準形式是解題的關鍵,意在考查學生的計算能力.19、【解析】

根據(jù),再寫出一個等式:,利用兩等式判斷并得到等差數(shù)列的通項,然后求值.【詳解】當時,,∴.當時,,①,②①②,得,化簡得,或,∵數(shù)列是遞減數(shù)列,且,∴舍去.∴數(shù)列是等差數(shù)列,且,公差,故.【點睛】在數(shù)列中,其前項和為,則有:,利用此關系,可將與的遞推公式轉(zhuǎn)化為關于的等式,從而判斷的特點.20、(1)(2)存在,使不等式恒成立,詳見解析.【解析】

(1)由知函數(shù)關于對稱,求出后,通過構(gòu)造函數(shù)求出;(2)利用不等式的兩邊夾定理,令,得,結(jié)合已知條件,解出;然后設存在實數(shù),,命題成立,運用根的判別式建立關于實數(shù)的不等式組,解得.【詳解】(1)由得此時,,構(gòu)造函數(shù),.即的取值范圍是.(2)由對一切實數(shù)恒成立,得由得由得恒成立,也即,此時,.把,.代入,不等式也恒成立,所以,.【點睛】本題第(1)問,常用“反客為主法”,即把參數(shù)當成主元,而把看成參數(shù);第(2)問,不等式對任意實數(shù)恒成立,常用賦值法切入問題.21、(1)證明見解析(2)【解析】

(1)連接,,作為棱的中點,連結(jié),,由平面平面,得到平面,則,再由,即可證明平面,從而得證;(2)根據(jù)等體積法求出點面距.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論