2025屆安徽省合肥市六校聯(lián)盟高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第1頁
2025屆安徽省合肥市六校聯(lián)盟高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第2頁
2025屆安徽省合肥市六校聯(lián)盟高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第3頁
2025屆安徽省合肥市六校聯(lián)盟高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第4頁
2025屆安徽省合肥市六校聯(lián)盟高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆安徽省合肥市六校聯(lián)盟高一數(shù)學第二學期期末教學質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列滿足,為其前項和,則不等式的的最大值為()A.7 B.8 C.9 D.102.已知圓,直線,點在直線上.若存在圓上的點,使得(為坐標原點),則的取值范圍是A. B. C. D.3.矩形ABCD中,,,則實數(shù)()A.-16 B.-6 C.4 D.4.截一個幾何體,各個截面都是圓面,則這個幾何體一定是()A.圓柱 B.圓錐 C.球 D.圓臺5.下列函數(shù)的最小值為的是()A. B.C. D.6.如圖,矩形ABCD中,點E為邊CD的中點,若在矩形ABCD內(nèi)部隨機取一個點Q,則點Q取自△ABE內(nèi)部的概率等于A. B.C. D.7.若正實數(shù)x,y滿足不等式,則的取值范圍是()A. B. C. D.8.如圖,正方形的邊長為a,以A,C為圓心,正方形邊長為半徑分別作圓,在正方形內(nèi)隨機取一點,則此點取自陰影部分的概率是()A.2-π2 B.2-π39.如圖,在三棱柱中,側(cè)棱垂直于底面,底面是邊長為2的正三角形,側(cè)棱長為3,則與平面所成的角為()A. B. C. D.10.已知m,n是兩條不同的直線,是三個不同的平面,則下列命題正確的是()A.若,,則 B.若,則C.若,,,則 D.若,,則二、填空題:本大題共6小題,每小題5分,共30分。11.若過點作圓的切線,則直線的方程為_______________.12.已知函數(shù)的最小正周期為,且的圖象過點,則方程所有解的和為________.13.已知等比數(shù)列的公比為,關(guān)于的不等式有下列說法:①當吋,不等式的解集②當吋,不等式的解集為③當>0吋,存在公比,使得不等式解集為④存在公比,使得不等式解集為R.上述說法正確的序號是_______.14.在△ABC中,a、b、c分別為角A、B、C的對邊,若b·cosC=c·cosB,且cosA=,則cosB的值為_____.15.已知sin=,則cos=________.16.函數(shù)的單調(diào)遞增區(qū)間為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在等差數(shù)列中,.(Ⅰ)求的通項公式;(Ⅱ)求數(shù)列的前項和.18.為了了解居民的用電情況,某地供電局抽查了該市若干戶居民月均用電量(單位:),并將樣本數(shù)據(jù)分組為,,,,,,,其頻率分布直方圖如圖所示.(1)若樣本中月均用電量在的居民有戶,求樣本容量;(2)求月均用電量的中位數(shù);(3)在月均用電量為,,,的四組居民中,用分層隨機抽樣法抽取戶居民,則月均用電量在的居民應抽取多少戶?19.某超市為了解端午節(jié)期間粽子的銷售量,對其所在銷售范圍內(nèi)的1000名消費者在端午節(jié)期間的粽子購買量(單位:g)進行了問卷調(diào)查,得到如圖所示的頻率分布直方圖.(Ⅰ)求頻率分布直方圖中a的值;(Ⅱ)求這1000名消費者的棕子購買量在600g~1400g的人數(shù);(Ⅲ)求這1000名消費者的人均粽子購買量(頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表).20.正四棱錐S-ABCD的底面邊長為2,側(cè)棱長為x.(1)求出其表面積S(x)和體積V(x);(2)設,求出函數(shù)的定義域,并判斷其單調(diào)性(無需證明).21.在中,,且.(1)求邊長;(2)求邊上中線的長.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由題意,整理得出是一個首項為12,公比為的等比數(shù)列,從而求出,再求出其前項和,然后再求出的表達式,再代入數(shù)驗證出的最大值即可.【詳解】由可得,即,所以數(shù)列是等比數(shù)列,又,所以,故,解得,(),所以的最大值為8.選B.【點睛】本題考查數(shù)列的遞推式以及數(shù)列求和的方法分組求和,屬于數(shù)列中的綜合題,考查了轉(zhuǎn)化的思想,構(gòu)造的意識,本題難度較大,思維能力要求高.2、B【解析】

根據(jù)條件若存在圓C上的點Q,使得為坐標原點),等價即可,求出不等式的解集即可得到的范圍【詳解】圓O外有一點P,圓上有一動點Q,在PQ與圓相切時取得最大值.

如果OP變長,那么可以獲得的最大值將變小.可以得知,當,且PQ與圓相切時,,

而當時,Q在圓上任意移動,存在恒成立.

因此滿足,就能保證一定存在點Q,使得,否則,這樣的點Q是不存在的,

點在直線上,,即

,

,

計算得出,,

的取值范圍是,

故選B.考點:正弦定理、直線與圓的位置關(guān)系.3、B【解析】

根據(jù)題意即可得出,從而得出,進行數(shù)量積的坐標運算即可求出實數(shù).【詳解】據(jù)題意知,,,.故選:.【點睛】考查向量垂直的充要條件,以及向量數(shù)量積的坐標運算,屬于容易題.4、C【解析】

試題分析:圓柱截面可能是矩形;圓錐截面可能是三角形;圓臺截面可能是梯形,該幾何體顯然是球,故選C.5、C【解析】分析:利用基本不等式的性質(zhì)即可判斷出正誤,注意“一正二定三相等”的使用法則.詳解:A.時顯然不滿足條件;B.其最小值大于1.D.令因此不正確.故選C.點睛:本題考查基本不等式,考查通過給變量取特殊值,舉反例來說明某個命題不正確,是一種簡單有效的方法.6、C【解析】

利用幾何概型的計算概率的方法解決本題,關(guān)鍵要弄準所求的隨機事件發(fā)生的區(qū)域的面積和事件總體的區(qū)域面積,通過相除的方法完成本題的解答.【詳解】解:由幾何概型的計算方法,可以得出所求事件的概率為P=.故選C.【點評】本題考查概率的計算,考查幾何概型的辨別,考查學生通過比例的方法計算概率的問題,考查學生分析問題解決問題的能力,考查學生幾何圖形面積的計算方法,屬于基本題型.7、B【解析】

試題分析:由正實數(shù)滿足不等式,得到如下圖陰影所示的區(qū)域:當過點時,,當過點時,,所以的取值范圍是.考點:線性規(guī)劃問題.8、D【解析】

將陰影部分拆分成兩個小弓形,從而可求解出陰影部分面積,根據(jù)幾何概型求得所求概率.【詳解】如圖所示:陰影部分可拆分為兩個小弓形則陰影部分面積:S正方形面積:S=∴所求概率P=本題正確選項:D【點睛】本題考查利用幾何概型求解概率問題,屬于基礎題.9、A【解析】

取的中點,連接、,作,垂足為點,證明平面,于是得出直線與平面所成的角為,然后利用銳角三角函數(shù)可求出.【詳解】如下圖所示,取的中點,連接、,作,垂足為點,是邊長為的等邊三角形,點為的中點,則,且,在三棱柱中,平面,平面,,,平面,平面,,,,平面,所以,直線與平面所成的角為,易知,在中,,,,,,即直線與平面所成的角為,故選A.【點睛】本題考查直線與平面所成角的計算,求解時遵循“一作、二證、三計算”的原則,一作的是過點作面的垂線,有時也可以通過等體積法計算出點到平面的距離,利用該距離與線段長度的比值作為直線與平面所成角的正弦值,考查計算能力與推理能力,屬于中等題.10、C【解析】

利用線面垂直、線面平行、面面垂直的性質(zhì)定理分別對選項分析選擇.【詳解】對于A,若,,則或者;故A錯誤;對于B,若,則可能在內(nèi)或者平行于;故B錯誤;對于C,若,,,過分作平面于,作平面,則根據(jù)線面平行的性質(zhì)定理得,,∴,根據(jù)線面平行的判定定理,可得,又,,根據(jù)線面平行的性質(zhì)定理可得,又,∴;故C正確;對于D.若,,則與可能垂直,如墻角;故D錯誤;故選:C.【點睛】本題考查了面面垂直、線面平行、線面垂直的性質(zhì)定理及應用,涉及空間線線平行的傳遞性,考查了空間想象能力,熟練運用定理是關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】

討論斜率不存在時是否有切線,當斜率存在時,運用點到直線距離等于半徑求出斜率【詳解】圓即①當斜率不存在時,為圓的切線②當斜率存在時,設切線方程為即,解得此時切線方程為,即綜上所述,則直線的方程為或【點睛】本題主要考查了過圓外一點求切線方程,在求解過程中先討論斜率不存在的情況,然后討論斜率存在的情況,利用點到直線距離公式求出結(jié)果,較為基礎。12、【解析】

由周期求出,由圖象的所過點的坐標求得,【詳解】由題意,又,且,∴,,由得或,又,,∴或,或,兩根之和為.故答案為:.【點睛】本題考查求三角函數(shù)的解析式,考查解三角方程.掌握正切函數(shù)的性質(zhì)是解題關(guān)鍵.13、③【解析】

利用等比數(shù)列的通項公式,解不等式后可得結(jié)論.【詳解】由題意,不等式變?yōu)?,即,若,則,當或時解為,當或時,解為,時,解為;若,則,當或時解為,當或時,解為,時,不等式無解.對照A、B、C、D,只有C正確.故選C.【點睛】本題考查等比數(shù)列的通項公式,考查解一元二次不等式,難點是解一元二次不等式,注意分類討論,本題中需對二次項系數(shù)分正負,然后以要對兩根分大小,另外還有一個是相應的一元二次方程是否有實數(shù)解分類(本題已經(jīng)有兩解,不需要這個分類).14、【解析】

利用余弦定理表示出與,代入已知等式中,整理得到,再利用余弦定理表示出,將及的值代入用表示出,將表示出的與代入中計算,即可求出值.【詳解】由題意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,則,故答案為.【點睛】本題考查了解三角形的綜合應用,高考中經(jīng)常將三角變換與解三角形知識綜合起來命題,如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理實現(xiàn)邊角互化;以上特征都不明顯時,則要考慮兩個定理都有可能用到.15、【解析】

由sin=,得cos2=1-2sin2=,即cos=,所以cos=cos=,故答案為.16、【解析】

令,解得的范圍即為所求的單調(diào)區(qū)間.【詳解】令,,解得:,的單調(diào)遞增區(qū)間為故答案為:【點睛】本題考查正弦型函數(shù)單調(diào)區(qū)間的求解問題,關(guān)鍵是能夠采用整體對應的方式,結(jié)合正弦函數(shù)的單調(diào)區(qū)間來進行求解.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出的通項公式.

(Ⅱ)由,,能求出數(shù)列的前n項和.【詳解】(Ⅰ)設等差數(shù)列的公差為,則解得,∴.(Ⅱ).18、(1)200(2)224(3)4戶【解析】

(1)因為,所以月均用電量在的頻率為,即可求得答案;(2)因為,設中位數(shù)為,,即可求得答案;(3)月均用電量為,,,的頻率分別為,即可求得答案.【詳解】(1),得.月均用電量在的頻率為.設樣本容量為N,則,.(2),月均用電量的中位數(shù)在內(nèi).設中位數(shù)為,,解得,即中位數(shù)為.(3)月均用電量為,,,的頻率分別為應從月均用電量在的用戶中抽取(戶)【點睛】本題考查了用樣本估計總體的相關(guān)計算,解題關(guān)鍵是掌握分層抽樣的計算方法和樣本容量,中位數(shù)定義,考查了分析能力和計算能力,屬于基礎題.19、(Ⅰ)a=0.1(Ⅱ)2(Ⅲ)1208g【解析】

(Ⅰ)由頻率分布直方圖的性質(zhì),列出方程,即可求解得值;(Ⅱ)先求出粽子購買量在的頻率,由此能求出這1000名消費者的粽子購買量在的人數(shù);(Ⅲ)由頻率分布直方圖能求出1000名消費者的人均購買粽子購買量【詳解】(Ⅰ)由頻率分布直方圖的性質(zhì),可得(0.0002+0.00055+a+0.0005+0.00025)×400=1,解得a=0.1.(Ⅱ)∵粽子購買量在600g~1400g的頻率為:(0.00055+0.1)×400=0.62,∴這1000名消費者的棕子購買量在600g~1400g的人數(shù)為:0.62×1000=2.(Ⅲ)由頻率分布直方圖得這1000名消費者的人均粽子購買量為:(400×0.0002+800×0.00055+1200×0.1+1600×0.0005+2000×0.00025)×400=1208g.【點睛】本題主要考查了頻率、頻數(shù)、以及頻率分布直方圖的應用,其中解答中熟記頻率分布直方圖的性質(zhì)是解答此類問題的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.20、(1),;(2)x>,是減函數(shù).【解析】

(1)畫出圖形,分別求出四棱錐的高,及側(cè)面的高的表達式,即可求出表面積與體積的表達式;(2)結(jié)合表達式,可求出的范圍,即定義域,然后判斷其為減函數(shù).【詳解】(1)過點作平面的垂線,垂足為,取的中點,連結(jié),因為為正四棱錐,所以,,,,所以四棱錐的表面積為,體積.(2),解得,是減

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論