山西省朔州市懷仁市重點(diǎn)達(dá)標(biāo)名校中考四模數(shù)學(xué)試題及答案解析_第1頁(yè)
山西省朔州市懷仁市重點(diǎn)達(dá)標(biāo)名校中考四模數(shù)學(xué)試題及答案解析_第2頁(yè)
山西省朔州市懷仁市重點(diǎn)達(dá)標(biāo)名校中考四模數(shù)學(xué)試題及答案解析_第3頁(yè)
山西省朔州市懷仁市重點(diǎn)達(dá)標(biāo)名校中考四模數(shù)學(xué)試題及答案解析_第4頁(yè)
山西省朔州市懷仁市重點(diǎn)達(dá)標(biāo)名校中考四模數(shù)學(xué)試題及答案解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山西省朔州市懷仁市重點(diǎn)達(dá)標(biāo)名校中考四模數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.cos45°的值是(

)A.

B.

C.

D.12.已知方程x2﹣x﹣2=0的兩個(gè)實(shí)數(shù)根為x1、x2,則代數(shù)式x1+x2+x1x2的值為()A.﹣3 B.1 C.3 D.﹣13.若關(guān)于x的方程是一元二次方程,則m的取值范圍是()A.. B.. C. D..4.已知拋物線y=x2+bx+c的對(duì)稱軸為x=2,若關(guān)于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍內(nèi)有兩個(gè)相等的實(shí)數(shù)根,則c的取值范圍是(

)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=45.如圖,小明同學(xué)用自制的直角三角形紙板DEF測(cè)量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上.已知紙板的兩條邊DF=50cm,EF=30cm,測(cè)得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為()A.12m B.13.5m C.15m D.16.5m6.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.7.如圖,Rt△ABC中,∠C=90°,∠A=35°,點(diǎn)D在邊BC上,BD=2CD.把△ABC繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m(0<m<180)度后,如果點(diǎn)B恰好落在初始Rt△ABC的邊上,那么m=()A.35° B.60° C.70° D.70°或120°8.下列計(jì)算正確的是()A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9C.(a-b)2=a2-b2 D.(a+b)2=a2+a29.如圖,在菱形ABCD中,AB=BD,點(diǎn)E,F(xiàn)分別在AB,AD上,且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H,下列結(jié)論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF,其中正確的結(jié)論A.只有①②. B.只有①③. C.只有②③. D.①②③.10.如圖,中,,且,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項(xiàng)中的A. B. C. D.11.對(duì)于反比例函數(shù)y=﹣2xA.圖象分布在第二、四象限B.當(dāng)x>0時(shí),y隨x的增大而增大C.圖象經(jīng)過點(diǎn)(1,﹣2)D.若點(diǎn)A(x1,y1),B(x2,y2)都在圖象上,且x1<x2,則y1<y212.由一些大小相同的小正方體組成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示在該位置上的小正方體的個(gè)數(shù),那么,這個(gè)幾何體的左視圖是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.二次函數(shù)y=x2-2x+1的對(duì)稱軸方程是x=_______.14.同時(shí)擲兩粒骰子,都是六點(diǎn)向上的概率是_____.15.在如圖所示的正方形方格紙中,每個(gè)小的四邊形都是相同的正方形,A、B、C、D都是格點(diǎn),AB與CD相交于M,則AM:BM=__.16.如圖,小紅作出了邊長(zhǎng)為1的第1個(gè)正△A1B1C1,算出了正△A1B1C1的面積,然后分別取△A1B1C1三邊的中點(diǎn)A2,B2,C2,作出了第2個(gè)正△A2B2C2,算出了正△A2B2C2的面積,用同樣的方法,作出了第3個(gè)正△A3B3C3,算出了正△A3B3C3的面積…,由此可得,第8個(gè)正△A8B8C8的面積是_____.17.已知關(guān)于x的一元二次方程(k﹣5)x2﹣2x+2=0有實(shí)根,則k的取值范圍為_____.18.分解因式:4m2﹣16n2=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,△ABC中,AB=AC=4,D、E分別為AB、AC的中點(diǎn),連接CD,過E作EF∥DC交BC的延長(zhǎng)線于F;(1)求證:DE=CF;(2)若∠B=60°,求EF的長(zhǎng).20.(6分)已知點(diǎn)O是正方形ABCD對(duì)角線BD的中點(diǎn).(1)如圖1,若點(diǎn)E是OD的中點(diǎn),點(diǎn)F是AB上一點(diǎn),且使得∠CEF=90°,過點(diǎn)E作ME∥AD,交AB于點(diǎn)M,交CD于點(diǎn)N.①∠AEM=∠FEM;②點(diǎn)F是AB的中點(diǎn);(2)如圖2,若點(diǎn)E是OD上一點(diǎn),點(diǎn)F是AB上一點(diǎn),且使,請(qǐng)判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動(dòng)點(diǎn)(不與O,D重合),連接CE,過E點(diǎn)作EF⊥CE,交AB于點(diǎn)F,當(dāng)時(shí),請(qǐng)猜想的值(請(qǐng)直接寫出結(jié)論).21.(6分)如圖所示,直線y=x+2與雙曲線y=相交于點(diǎn)A(2,n),與x軸交于點(diǎn)C.(1)求雙曲線解析式;(2)點(diǎn)P在x軸上,如果△ACP的面積為5,求點(diǎn)P的坐標(biāo).22.(8分)如圖,兩座建筑物的水平距離為.從點(diǎn)測(cè)得點(diǎn)的仰角為53°,從點(diǎn)測(cè)得點(diǎn)的俯角為37°,求兩座建筑物的高度(參考數(shù)據(jù):23.(8分)如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過點(diǎn)M,N.(1)求反比例函數(shù)的解析式;(2)若點(diǎn)P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).24.(10分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).求反比例函數(shù)和一次函數(shù)的解析式;求直線AB與x軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;直接寫出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.25.(10分)計(jì)算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.26.(12分)“分組合作學(xué)習(xí)”已成為推動(dòng)課堂教學(xué)改革,打造自主高效課堂的重要措施.某中學(xué)從全校學(xué)生中隨機(jī)抽取部分學(xué)生對(duì)“分組合作學(xué)習(xí)”實(shí)施后的學(xué)習(xí)興趣情況進(jìn)行調(diào)查分析,統(tǒng)計(jì)圖如下:請(qǐng)結(jié)合圖中信息解答下列問題:求出隨機(jī)抽取調(diào)查的學(xué)生人數(shù);補(bǔ)全分組后學(xué)生學(xué)習(xí)興趣的條形統(tǒng)計(jì)圖;分組后學(xué)生學(xué)習(xí)興趣為“中”的所占的百分比和對(duì)應(yīng)扇形的圓心角.27.(12分)如圖,拋物線y=x1﹣1x﹣3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),直線l與拋物線交于A,C兩點(diǎn),其中點(diǎn)C的橫坐標(biāo)為1.(1)求A,B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;(1)P是線段AC上的一個(gè)動(dòng)點(diǎn)(P與A,C不重合),過P點(diǎn)作y軸的平行線交拋物線于點(diǎn)E,求△ACE面積的最大值;(3)若直線PE為拋物線的對(duì)稱軸,拋物線與y軸交于點(diǎn)D,直線AC與y軸交于點(diǎn)Q,點(diǎn)M為直線PE上一動(dòng)點(diǎn),則在x軸上是否存在一點(diǎn)N,使四邊形DMNQ的周長(zhǎng)最小?若存在,求出這個(gè)最小值及點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說明理由.(4)點(diǎn)H是拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、H四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

本題主要是特殊角的三角函數(shù)值的問題,求解本題的關(guān)鍵是熟悉特殊角的三角函數(shù)值.【詳解】cos45°=.故選:C.【點(diǎn)睛】本題考查特殊角的三角函數(shù)值.2、D【解析】分析:根據(jù)一元二次方程根與系數(shù)的關(guān)系求出x1+x2和x1x2的值,然后代入x1+x2+x1x2計(jì)算即可.詳解:由題意得,a=1,b=-1,c=-2,∴,,∴x1+x2+x1x2=1+(-2)=-1.故選D.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)的關(guān)系,若x1,x2為方程的兩個(gè)根,則x1,x2與系數(shù)的關(guān)系式:,.3、A【解析】

根據(jù)一元二次方程的定義可得m﹣1≠0,再解即可.【詳解】由題意得:m﹣1≠0,解得:m≠1,故選A.【點(diǎn)睛】此題主要考查了一元二次方程的定義,關(guān)鍵是掌握只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程.4、D【解析】解:由對(duì)稱軸x=2可知:b=﹣4,∴拋物線y=x2﹣4x+c,令x=﹣1時(shí),y=c+5,x=3時(shí),y=c﹣3,關(guān)于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍有實(shí)數(shù)根,當(dāng)△=0時(shí),即c=4,此時(shí)x=2,滿足題意.當(dāng)△>0時(shí),(c+5)(c﹣3)≤0,∴﹣5≤c≤3,當(dāng)c=﹣5時(shí),此時(shí)方程為:﹣x2+4x+5=0,解得:x=﹣1或x=5不滿足題意,當(dāng)c=3時(shí),此時(shí)方程為:﹣x2+4x﹣3=0,解得:x=1或x=3此時(shí)滿足題意,故﹣5<c≤3或c=4,故選D.點(diǎn)睛:本題主要考查二次函數(shù)與一元二次方程的關(guān)系.理解二次函數(shù)與一元二次方程之間的關(guān)系是解題的關(guān)鍵.5、D【解析】

利用直角三角形DEF和直角三角形BCD相似求得BC的長(zhǎng)后加上小明同學(xué)的身高即可求得樹高AB.【詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案為16.5m.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是從實(shí)際問題中整理出相似三角形的模型.6、C【解析】

結(jié)合圖形,逐項(xiàng)進(jìn)行分析即可.【詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【點(diǎn)睛】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.7、D【解析】

①當(dāng)點(diǎn)B落在AB邊上時(shí),根據(jù)DB=DB1,即可解決問題,②當(dāng)點(diǎn)B落在AC上時(shí),在RT△DCB2中,根據(jù)∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【詳解】①當(dāng)點(diǎn)B落在AB邊上時(shí),∵DB=DB∴∠B=∠DB∴m=∠BDB②當(dāng)點(diǎn)B落在AC上時(shí),在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故選D.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是旋轉(zhuǎn)的性質(zhì),解題關(guān)鍵是考慮多種情況,進(jìn)行分類討論.8、B【解析】

利用完全平方公式及平方差公式計(jì)算即可.【詳解】解:A、原式=a2-6a+9,本選項(xiàng)錯(cuò)誤;

B、原式=a2-9,本選項(xiàng)正確;

C、原式=a2-2ab+b2,本選項(xiàng)錯(cuò)誤;

D、原式=a2+2ab+b2,本選項(xiàng)錯(cuò)誤,

故選:B.【點(diǎn)睛】本題考查了平方差公式和完全平方公式,熟練掌握公式是解題的關(guān)鍵.9、D【解析】

解:①∵ABCD為菱形,∴AB=AD.∵AB=BD,∴△ABD為等邊三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點(diǎn)B、C、D、G四點(diǎn)共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.過點(diǎn)C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,則△CBM≌△CDN,(HL)∴S四邊形BCDG=S四邊形CMGN.S四邊形CMGN=1S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四邊形CMGN=1S△CMG=1××CG×CG=CG1.③過點(diǎn)F作FP∥AE于P點(diǎn).∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故選D.10、D【解析】

Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質(zhì)得出∠OCD=∠A,即∠AOD=∠OCD=45°,進(jìn)而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數(shù)關(guān)系的圖象應(yīng)為定義域?yàn)閇0,3],開口向上的二次函數(shù)圖象;故選D.【點(diǎn)睛】本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征,解答本題的關(guān)鍵是根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.11、D【解析】

根據(jù)反比例函數(shù)圖象的性質(zhì)對(duì)各選項(xiàng)分析判斷后利用排除法求解.【詳解】A.k=?2<0,∴它的圖象在第二、四象限,故本選項(xiàng)正確;B.k=?2<0,當(dāng)x>0時(shí),y隨x的增大而增大,故本選項(xiàng)正確;C.∵-2D.若點(diǎn)A(x1,y1),B(x2,y2)都在圖象上,,若x1<0<x2,則y2<y1,故本選項(xiàng)錯(cuò)誤.故選:D.【點(diǎn)睛】考查了反比例函數(shù)的圖象與性質(zhì),掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.12、A【解析】從左面看,得到左邊2個(gè)正方形,中間3個(gè)正方形,右邊1個(gè)正方形.故選A.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】

利用公式法可求二次函數(shù)y=x2-2x+1的對(duì)稱軸.也可用配方法.【詳解】∵-=-=1,∴x=1.故答案為:1【點(diǎn)睛】本題考查二次函數(shù)基本性質(zhì)中的對(duì)稱軸公式;也可用配方法解決.14、.【解析】

同時(shí)擲兩粒骰子,一共有6×6=36種等可能情況,都是六點(diǎn)向上只有一種情況,按概率公式計(jì)算即可.【詳解】解:都是六點(diǎn)向上的概率是.【點(diǎn)睛】本題考查了概率公式的應(yīng)用.15、5:1【解析】

根據(jù)題意作出合適的輔助線,然后根據(jù)三角形相似即可解答本題.【詳解】解:作AE∥BC交DC于點(diǎn)E,交DF于點(diǎn)F,設(shè)每個(gè)小正方形的邊長(zhǎng)為a,則△DEF∽△DCN,∴==,∴EF=a,∵AF=2a,∴AE=a,∵△AME∽△BMC,∴===,故答案為:5:1.【點(diǎn)睛】本題考查相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.16、【解析】

根據(jù)相似三角形的性質(zhì),先求出正△A2B2C2,正△A3B3C3的面積,依此類推△AnBnCn的面積是,從而求出第8個(gè)正△A8B8C8的面積.【詳解】正△A1B1C1的面積是,而△A2B2C2與△A1B1C1相似,并且相似比是1:2,則面積的比是,則正△A2B2C2的面積是×;因而正△A3B3C3與正△A2B2C2的面積的比也是,面積是×()2;依此類推△AnBnCn與△An-1Bn-1Cn-1的面積的比是,第n個(gè)三角形的面積是()n-1.所以第8個(gè)正△A8B8C8的面積是×()7=.故答案為.【點(diǎn)睛】本題考查了相似三角形的性質(zhì)及應(yīng)用,相似三角形面積的比等于相似比的平方,找出規(guī)律是關(guān)鍵.17、【解析】

若一元二次方程有實(shí)根,則根的判別式△=b2-4ac≥0,且k-1≠0,建立關(guān)于k的不等式組,求出k的取值范圍.【詳解】解:∵方程有兩個(gè)實(shí)數(shù)根,∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,解得:k≤且k≠1,故答案為k≤且k≠1.【點(diǎn)睛】此題考查根的判別式問題,總結(jié):一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;(3)△<0?方程沒有實(shí)數(shù)根.18、4(m+2n)(m﹣2n).【解析】

原式提取4后,利用平方差公式分解即可.【詳解】解:原式=4().故答案為【點(diǎn)睛】本題考查提公因式法與公式法的綜合運(yùn)用,解題的關(guān)鍵是熟練掌握因式分解的方法.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、證明見解析;.【解析】

根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形即可證明;只要求出CD即可解決問題.【詳解】證明:、E分別是AB、AC的中點(diǎn),又四邊形CDEF為平行四邊形.,,又為AB中點(diǎn),在中,,,四邊形CDEF是平行四邊形,.【點(diǎn)睛】本題考查平行四邊形的判定和性質(zhì)、勾股定理、三角形的中位線定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考??碱}型.20、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【解析】試題分析:(1)①過點(diǎn)E作EG⊥BC,垂足為G,根據(jù)ASA證明△CEG≌△FEM得CE=FE,再根據(jù)SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據(jù)等腰三角形“三線合一”即可證明結(jié)論成立;②設(shè)AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點(diǎn)F是AB的中點(diǎn).;(2)過點(diǎn)E作EM⊥AB,垂足為M,延長(zhǎng)ME交CD于點(diǎn)N,過點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點(diǎn)E作EM⊥AB,垂足為M,延長(zhǎng)ME交CD于點(diǎn)N,過點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM(ASA),得AM=FM,設(shè)AM=x,則AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.試題解析:(1)①過點(diǎn)E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②設(shè)AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四邊形AMND為矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴點(diǎn)F是AB的中點(diǎn).(2)△EFC是等腰直角三角形.過點(diǎn)E作EM⊥AB,垂足為M,延長(zhǎng)ME交CD于點(diǎn)N,過點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG,設(shè)AM=x,則DN=AM=x,DE=x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)過點(diǎn)E作EM⊥AB,垂足為M,延長(zhǎng)ME交CD于點(diǎn)N,過點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC=90°,∴∠CEG+∠FEG=90°.又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG=∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM(ASA),∴AM=FM.設(shè)AM=x,則AF=2x,DN=x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考點(diǎn):四邊形綜合題.21、(1);(2)(,0)或【解析】

(1)把A點(diǎn)坐標(biāo)代入直線解析式可求得n的值,則可求得A點(diǎn)坐標(biāo),再把A點(diǎn)坐標(biāo)代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設(shè)P(x,0),則可表示出PC的長(zhǎng),進(jìn)一步表示出△ACP的面積,可得到關(guān)于x的方程,解方程可求得P點(diǎn)的坐標(biāo).【詳解】解:(1)把A(2,n)代入直線解析式得:n=3,∴A(2,3),把A坐標(biāo)代入y=,得k=6,則雙曲線解析式為y=.(2)對(duì)于直線y=x+2,令y=0,得到x=-4,即C(-4,0).設(shè)P(x,0),可得PC=|x+4|.∵△ACP面積為5,∴|x+4|?3=5,即|x+4|=2,解得:x=-或x=-,則P坐標(biāo)為或.22、建筑物的高度為.建筑物的高度為.【解析】分析:過點(diǎn)D作DE⊥AB于于E,則DE=BC=60m.在Rt△ABC中,求出AB.在Rt△ADE中求出AE即可解決問題.詳解:過點(diǎn)D作DE⊥AB于于E,則DE=BC=60m,在Rt△ABC中,tan53°==,∴AB=80(m).在Rt△ADE中,tan37°==,∴AE=45(m),∴BE=CD=AB﹣AE=35(m).答:兩座建筑物的高度分別為80m和35m.點(diǎn)睛:本題考查的是解直角三角形的應(yīng)用﹣仰角俯角問題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.23、(1);(2)點(diǎn)P的坐標(biāo)是(0,4)或(0,-4).【解析】

(1)求出OA=BC=2,將y=2代入求出x=2,得出M的坐標(biāo),把M的坐標(biāo)代入反比例函數(shù)的解析式即可求出答案.(2)求出四邊形BMON的面積,求出OP的值,即可求出P的坐標(biāo).【詳解】(1)∵B(4,2),四邊形OABC是矩形,∴OA=BC=2.將y=2代入3得:x=2,∴M(2,2).把M的坐標(biāo)代入得:k=4,∴反比例函數(shù)的解析式是;(2).∵△OPM的面積與四邊形BMON的面積相等,∴.∵AM=2,∴OP=4.∴點(diǎn)P的坐標(biāo)是(0,4)或(0,-4).24、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】

(1)先把B點(diǎn)坐標(biāo)代入代入y=,求出m得到反比例函數(shù)解析式,再利用反比例函數(shù)解析式確定A點(diǎn)坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式;(2)根據(jù)x軸上點(diǎn)的坐標(biāo)特征確定C點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式和△AOB的面積=S△AOC+S△BOC進(jìn)行計(jì)算;(3)觀察函數(shù)圖象得到當(dāng)﹣4<x<0或x>2時(shí),一次函數(shù)圖象都在反比例函數(shù)圖象下方.【詳解】解:∵B(2,﹣4)在反比例函數(shù)y=的圖象上,∴m=2×(﹣4)=﹣8,∴反比例函數(shù)解析式為:y=﹣,把A(﹣4,n)代入y=﹣,得﹣4n=﹣8,解得n=2,則A點(diǎn)坐標(biāo)為(﹣4,2).把A(﹣4,2),B(2,﹣4)分別代入y=kx+b,得,解得,∴一次函數(shù)的解析式為y=﹣x﹣2;(2)∵y=﹣x﹣2,∴當(dāng)﹣x﹣2=0時(shí),x=﹣2,∴點(diǎn)C的坐標(biāo)為:(﹣2,0),△AOB的面積=△AOC的面積+△COB的面積=×2×2+×2×4=6;(3)由圖象可知,當(dāng)﹣4<x<0或x>2時(shí),一次函數(shù)的值小于反比例函數(shù)的值.【點(diǎn)睛】本題考查的是一次函數(shù)與反比例函數(shù)的交點(diǎn)問題以及待定系數(shù)法的運(yùn)用,靈活運(yùn)用待定系數(shù)法是解題的關(guān)鍵,注意數(shù)形結(jié)合思想的正確運(yùn)用.25、【解析】

直接利用絕對(duì)值的性質(zhì)以及特殊角的三角函數(shù)值、負(fù)整數(shù)指數(shù)冪的性質(zhì)化簡(jiǎn),進(jìn)而求出答案.【詳解】原式.【點(diǎn)睛】考核知識(shí)點(diǎn):三角函數(shù)混合運(yùn)算.正確計(jì)算是關(guān)鍵.26、(1)200人;(2)補(bǔ)圖見

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論