版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆湖南省長(zhǎng)沙市廣益實(shí)驗(yàn)中學(xué)高一下數(shù)學(xué)期末調(diào)研模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中任取一實(shí)數(shù)作為x,則使得不等式成立的概率為()A. B. C. D.2.等差數(shù)列{an}的前n項(xiàng)之和為Sn,若A.45 B.54C.63 D.273.對(duì)于數(shù)列,定義為數(shù)列的“好數(shù)”,已知某數(shù)列的“好數(shù)”,記數(shù)列的前項(xiàng)和為,若對(duì)任意的恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.4.設(shè)是同一個(gè)半徑為4的球的球面上四點(diǎn),為等邊三角形且其面積為,則三棱錐體積的最大值為A. B. C. D.5.定義運(yùn)算,設(shè),若,,,則的值域?yàn)椋ǎ〢. B. C. D.6.函數(shù)的對(duì)稱中心是()A. B. C. D.7.如圖,兩個(gè)正方形和所在平面互相垂直,設(shè)、分別是和的中點(diǎn),那么:①;②平面;③;④、異面.其中不正確的序號(hào)是()A.① B.② C.③ D.④8.直線的傾斜角是()A. B. C. D.9.已知,且,則()A. B.7 C. D.10.sincos+cos20°sin40°的值等于A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)的圖象與直線恰有兩個(gè)不同交點(diǎn),則m的取值范圍是________.12.函數(shù)在的值域是______________.13.已知點(diǎn)在直線上,則的最小值為_(kāi)_________.14.函數(shù)f(x)=2cos(x)﹣1的對(duì)稱軸為_(kāi)____,最小值為_(kāi)____.15.己知數(shù)列滿足就:,,若,寫(xiě)出所有可能的取值為_(kāi)_____.16.已知四棱錐的底面是邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)均為.若圓柱的一個(gè)底面的圓周經(jīng)過(guò)四棱錐四條側(cè)棱的中點(diǎn),另一個(gè)底面的圓心為四棱錐底面的中心,則該圓柱的體積為_(kāi)_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知數(shù)列中,,.(1)求數(shù)列的通項(xiàng)公式:(2)設(shè),求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.18.已知關(guān)于的函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若對(duì)任意的恒成立,求實(shí)數(shù)的最大值.19.已知向量.(1)若,且,求實(shí)數(shù)的值;(2)若,且與的夾角為,求實(shí)數(shù)的值.20.設(shè)數(shù)列,,已知,,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)為數(shù)列的前項(xiàng)和,對(duì)任意.(i)求證:;(ii)若恒成立,求實(shí)數(shù)的取值范圍.21.某同學(xué)假期社會(huì)實(shí)踐活動(dòng)選定的課題是“節(jié)約用水研究”.為此他購(gòu)買了電子節(jié)水閥,并記錄了家庭未使用電子節(jié)水閥20天的日用水量數(shù)據(jù)(單位:)和使用了電子節(jié)水閥20天的日用水量數(shù)據(jù),并利用所學(xué)的《統(tǒng)計(jì)學(xué)》知識(shí)得到了未使用電子節(jié)水閥20天的日平均用水量為0.48,使用了電子節(jié)水閥20天的日用水量數(shù)據(jù)的頻率分布直方圖如下圖:(1)試估計(jì)該家庭使用電子節(jié)水閥后,日用水量小于0.35的概率;(2)估計(jì)該家庭使用電子節(jié)水閥后,一年能節(jié)省多少水?(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表.)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
先求解不等式,再利用長(zhǎng)度型的幾何概型概率公式求解即可【詳解】由題,因?yàn)?解得,則,故選:C【點(diǎn)睛】本題考查長(zhǎng)度型的幾何概型,考查解對(duì)數(shù)不等式2、B【解析】
由等差數(shù)列的性質(zhì),可知a1【詳解】由等差數(shù)列的性質(zhì),可知a1又由等差數(shù)列的前n項(xiàng)和公式,可得S9【點(diǎn)睛】本題主要考查了等差數(shù)列的性質(zhì),以及前n項(xiàng)和公式的應(yīng)用,其中解答中熟記等差數(shù)列的性質(zhì),以及利用等差數(shù)列的求和公式,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.3、B【解析】分析:由題意首先求得的通項(xiàng)公式,然后結(jié)合等差數(shù)列的性質(zhì)得到關(guān)于k的不等式組,求解不等式組即可求得最終結(jié)果.詳解:由題意,,則,很明顯n?2時(shí),,兩式作差可得:,則an=2(n+1),對(duì)a1也成立,故an=2(n+1),則an?kn=(2?k)n+2,則數(shù)列{an?kn}為等差數(shù)列,故Sn?S6對(duì)任意的恒成立可化為:a6?6k?0,a7?7k?0;即,解得:.實(shí)數(shù)的取值范圍為.本題選擇B選項(xiàng).點(diǎn)睛:“新定義”主要是指即時(shí)定義新概念、新公式、新定理、新法則、新運(yùn)算五種,然后根據(jù)此新定義去解決問(wèn)題,有時(shí)還需要用類比的方法去理解新的定義,這樣有助于對(duì)新定義的透徹理解.對(duì)于此題中的新概念,對(duì)閱讀理解能力有一定的要求.但是,透過(guò)現(xiàn)象看本質(zhì),它們考查的還是基礎(chǔ)數(shù)學(xué)知識(shí),所以說(shuō)“新題”不一定是“難題”,掌握好三基,以不變應(yīng)萬(wàn)變才是制勝法寶.4、B【解析】
分析:作圖,D為MO與球的交點(diǎn),點(diǎn)M為三角形ABC的中心,判斷出當(dāng)平面時(shí),三棱錐體積最大,然后進(jìn)行計(jì)算可得.詳解:如圖所示,點(diǎn)M為三角形ABC的中心,E為AC中點(diǎn),當(dāng)平面時(shí),三棱錐體積最大此時(shí),,點(diǎn)M為三角形ABC的中心中,有故選B.點(diǎn)睛:本題主要考查三棱錐的外接球,考查了勾股定理,三角形的面積公式和三棱錐的體積公式,判斷出當(dāng)平面時(shí),三棱錐體積最大很關(guān)鍵,由M為三角形ABC的重心,計(jì)算得到,再由勾股定理得到OM,進(jìn)而得到結(jié)果,屬于較難題型.5、C【解析】
由題意,由于與都是周期函數(shù),且最小正周期都是,故只須在一個(gè)周期上考慮函數(shù)的值域即可,分別畫(huà)出與的圖象,如圖所示,觀察圖象可得:的值域?yàn)?,故選C.6、C【解析】,設(shè)是奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱,而函數(shù)的圖象可由的圖象向右平移一個(gè)單位,向下平移兩個(gè)單位得到,所以函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,故選C.7、D【解析】
取的中點(diǎn),連接,,連接,,由線面垂直的判定和性質(zhì)可判斷①;由三角形的中位線定理,以及線面平行的判定定理可判斷②③④.【詳解】解:取的中點(diǎn),連接,,連接,,正方形和所在平面互相垂直,、分別是和的中點(diǎn),可得,,平面,可得,故①正確;由為的中位線,可得,且平面,可得平面,故②③正確,④錯(cuò)誤.故選:D.【點(diǎn)睛】本題主要考查空間線線和線面的位置關(guān)系,考查轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于基礎(chǔ)題.8、D【解析】
先求出直線的斜率,再求直線的傾斜角.【詳解】由題得直線的斜率.故選:D【點(diǎn)睛】本題主要考查直線的斜率和傾斜角的計(jì)算,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.9、D【解析】
由平方關(guān)系求得,再由商數(shù)關(guān)系求得,最后由兩角和的正切公式可計(jì)算.【詳解】,,,,.故選:D.【點(diǎn)睛】本題考查兩角和的正切公式,考查同角間的三角函數(shù)關(guān)系.屬于基礎(chǔ)題.10、B【解析】由題可得,.故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
化簡(jiǎn)函數(shù)解析式為,做出函數(shù)的圖象,數(shù)形結(jié)合可得的取值范圍.【詳解】解:因?yàn)樗裕?,由,可得,則函數(shù),的圖象與直線恰有兩個(gè)不同交點(diǎn),即方程在上有兩個(gè)不同的解,畫(huà)出的圖象如下所示:依題意可得時(shí),函數(shù)的圖象與直線恰有兩個(gè)不同交點(diǎn),故答案為:【點(diǎn)睛】本題主要考查正弦函數(shù)的最大值和單調(diào)性,函數(shù)的圖象變換規(guī)律,正弦函數(shù)的圖象特征,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.12、【解析】
利用,即可得出.【詳解】解:由已知,,又
,
故答案為:.【點(diǎn)睛】本題考查了反三角函數(shù)的求值、單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.13、5【解析】
由題得表示點(diǎn)到點(diǎn)的距離,再利用點(diǎn)到直線的距離求解.【詳解】由題得表示點(diǎn)到點(diǎn)的距離.又∵點(diǎn)在直線上,∴的最小值等于點(diǎn)到直線的距離,且.【點(diǎn)睛】本題主要考查點(diǎn)到兩點(diǎn)間的距離和點(diǎn)到直線的距離的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.14、﹣3【解析】
利用余弦函數(shù)的圖象的對(duì)稱性,余弦函數(shù)的最值,求得結(jié)論.【詳解】解:對(duì)于函數(shù),令,求得,根據(jù)余弦函數(shù)的值域可得函數(shù)的最小值為,故答案為:;.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對(duì)稱性,余弦函數(shù)的最值,屬于基礎(chǔ)題.15、【解析】(1)若為偶數(shù),則為偶,故①當(dāng)仍為偶數(shù)時(shí),故②當(dāng)為奇數(shù)時(shí),故得m=4。(2)若為奇數(shù),則為偶數(shù),故必為偶數(shù),所以=1可得m=516、.【解析】
根據(jù)棱錐的結(jié)構(gòu)特點(diǎn),確定所求的圓柱的高和底面半徑.【詳解】由題意四棱錐的底面是邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)均為,借助勾股定理,可知四棱錐的高為,.若圓柱的一個(gè)底面的圓周經(jīng)過(guò)四棱錐四條側(cè)棱的中點(diǎn),圓柱的底面半徑為,一個(gè)底面的圓心為四棱錐底面的中心,故圓柱的高為,故圓柱的體積為.【點(diǎn)睛】本題主要考查了圓柱與四棱錐的組合,考查了空間想象力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2),【解析】
(1)利用累加法得到答案.(2)計(jì)算,利用裂項(xiàng)求和得到前項(xiàng)和.【詳解】(1)由題意可知左右累加得.(2).【點(diǎn)睛】本題考查了數(shù)列的累加法,裂項(xiàng)求和法,是數(shù)列的常考題型.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)由時(shí),根據(jù),利用一元二次不等式的解法,即可求解;(Ⅱ)由對(duì)任意的恒成立,得到,利用基本不等式求得最小值,即可求解.【詳解】(Ⅰ)由題意,當(dāng)時(shí),函數(shù),由,即,解得或,所以不等式的解集為.(Ⅱ)因?yàn)閷?duì)任意的恒成立,即,又由,當(dāng)且僅當(dāng)時(shí),即時(shí),取得最小值,所以,即實(shí)數(shù)的最大值為.【點(diǎn)睛】本題主要考查了一元二次不等式的求解,以及基本不等式的應(yīng)用,其中解答中熟記一元二次不等式的解法,以及合理利用基本不等式求得最小值是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.19、(1);(2).【解析】
(1)根據(jù)平面向量加法和數(shù)乘的坐標(biāo)表示公式、數(shù)量積的坐標(biāo)表示公式,結(jié)合兩個(gè)互相垂直的平面向量數(shù)量積為零,進(jìn)行求解即可;(2)利用平面向量夾角公式進(jìn)行求解即可.【詳解】(1)當(dāng)時(shí),.因?yàn)?,所以;?)當(dāng)時(shí),所以有,因?yàn)榕c的夾角為,所以有.【點(diǎn)睛】本題考查了平面向量運(yùn)算的坐標(biāo)表示公式,考查了平面向量夾角公式,考查了數(shù)學(xué)運(yùn)算能力.20、(1);(2)(i)見(jiàn)證明;(ii)【解析】
(1)計(jì)算可知數(shù)列為等比數(shù)列;(2)(i)要證即證{}恒為0;(ii)由前兩問(wèn)求出再求出,帶入式子,再解不等式.【詳解】(1),又,是以2為首項(xiàng),為公比的等比數(shù)列,;(2)(i),又恒成立,即(ii)由,,兩式相加即得:,,,,當(dāng)n為奇數(shù)時(shí),隨n的增大而遞增,且;當(dāng)n為偶數(shù)時(shí),隨n的增大而遞減,且;的最大值為,的最小值為2,解得,所以實(shí)數(shù)p的取值范圍為.【點(diǎn)睛】本類試題,注意看問(wèn)題,一般情況,問(wèn)題都會(huì)指明解題方向21、(1)0.48(2)()【解析】
(1)計(jì)算日用水量
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 綜采隊(duì)崗位管理制度總結(jié)(3篇)
- 配置網(wǎng)絡(luò)安全管理制度(3篇)
- 項(xiàng)目建設(shè)資料歸檔管理制度(3篇)
- 《GA 557.12-2005互聯(lián)網(wǎng)上網(wǎng)服務(wù)營(yíng)業(yè)場(chǎng)所信息安全管理代碼 第12部分:審計(jì)規(guī)則代碼》專題研究報(bào)告
- 《筑牢安全防線 歡度平安寒假》2026年寒假安全教育主題班會(huì)課件
- 養(yǎng)老院家屬溝通與反饋制度
- 2026河北空天信息投資控股有限公司社會(huì)招聘7人考試備考題庫(kù)附答案
- 2026湖北省定向東南大學(xué)選調(diào)生招錄備考題庫(kù)附答案
- 2026湖南株洲市天元區(qū)馬家河街道社區(qū)衛(wèi)生服務(wù)中心招聘見(jiàn)習(xí)人員備考題庫(kù)附答案
- 2026班瑪縣教育局面向社會(huì)招聘工作人員招聘40人備考題庫(kù)附答案
- 養(yǎng)老院老人生活設(shè)施管理制度
- (2025年)林業(yè)系統(tǒng)事業(yè)單位招聘考試《林業(yè)知識(shí)》真題庫(kù)與答案
- 2026年七臺(tái)河職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性考試備考題庫(kù)有答案解析
- 2026年直播服務(wù)合同
- 掛靠取消協(xié)議書(shū)
- 哲學(xué)史重要名詞解析大全
- 銀行借款抵押合同范本
- 新生兒休克診療指南
- DB37-T4975-2025分布式光伏直采直控技術(shù)規(guī)范
- 專題學(xué)習(xí)活動(dòng) 期末復(fù)習(xí)課件 新教材統(tǒng)編版八年級(jí)語(yǔ)文上冊(cè)
- 兒童糖尿病的發(fā)病機(jī)制與個(gè)體化治療策略
評(píng)論
0/150
提交評(píng)論