版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東順德華僑中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在公比q為整數(shù)的等比數(shù)列{an}中,Sn是數(shù)列{an}A.q=2 B.?dāng)?shù)列SnC.S8=510 D.?dāng)?shù)列2.某興趣小組合作制作了一個(gè)手工制品,并將其繪制成如圖所示的三視圖,其中側(cè)視圖中的圓的半徑為3,則制作該手工制品表面積為()A. B. C. D.3.已知實(shí)數(shù)m,n滿足不等式組則關(guān)于x的方程x2-(3m+2n)x+6mn=0的兩根之和的最大值和最小值分別是()A.7,-4 B.8,-8C.4,-7 D.6,-64.在平面直角坐標(biāo)系xoy中,橫、縱坐標(biāo)均為整數(shù)的點(diǎn)叫做格點(diǎn),若函數(shù)的圖象恰好經(jīng)過個(gè)格點(diǎn),則稱函數(shù)為階格點(diǎn)函數(shù).下列函數(shù)中為一階格點(diǎn)函數(shù)的是()A. B. C. D.5.如圖所示,在正方形ABCD中,E為AB的中點(diǎn),F(xiàn)為CE的中點(diǎn),則A. B.C. D.6.函數(shù)y=tan(–2x)的定義域是()A.{x|x≠+,k∈Z} B.{x|x≠kπ+,k∈Z}C.{x|x≠+,k∈Z} D.{x|x≠kπ+,k∈Z}7.已知函數(shù),若存在滿足,且,則n的最小值為()A.3 B.4 C.5 D.68.設(shè)是兩個(gè)不同的平面,是一條直線,以下命題正確的是()A.若,則 B.若,則C.若,則 D.若,則9.等差數(shù)列的前項(xiàng)和為.若,則()A. B. C. D.10.一個(gè)正方體的體積是8,則這個(gè)正方體的內(nèi)切球的表面積是()A.8π B.6π C.4π D.π二、填空題:本大題共6小題,每小題5分,共30分。11._________________.12.在等比數(shù)列中,,的值為________13.函數(shù)的定義域?yàn)锳,若時(shí)總有為單函數(shù).例如,函數(shù)=2x+1()是單函數(shù).下列命題:①函數(shù)=(xR)是單函數(shù);②若為單函數(shù),且則;③若f:AB為單函數(shù),則對(duì)于任意bB,它至多有一個(gè)原象;④函數(shù)f(x)在某區(qū)間上具有單調(diào)性,則f(x)一定是單函數(shù).其中的真命題是.(寫出所有真命題的編號(hào))14.函數(shù)在區(qū)間上的最大值為,則的值是_____________.15.設(shè)等差數(shù)列,的前項(xiàng)和分別為,,若,則__________.16.已知為所在平面內(nèi)一點(diǎn),且,則_____三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)中,圓與圓相交與兩點(diǎn).(I)求線段的長.(II)記圓與軸正半軸交于點(diǎn),點(diǎn)在圓C上滑動(dòng),求面積最大時(shí)的直線的方程.18.已知圓:與圓:.(1)求兩圓的公共弦長;(2)過平面上一點(diǎn)向圓和圓各引一條切線,切點(diǎn)分別為,設(shè),求證:平面上存在一定點(diǎn)使得到的距離為定值,并求出該定值.19.已知向量的夾角為60°,且.(1)求與的值;(2)求與的夾角.20.已知圓經(jīng)過,,三點(diǎn).(1)求圓的標(biāo)準(zhǔn)方程;(2)若過點(diǎn)N的直線被圓截得的弦AB的長為,求直線的傾斜角.21.在中,內(nèi)角的對(duì)邊分別為,且.(1)求角;(2)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
由等比數(shù)列的公比q為整數(shù),得到a2<a3,再由等比數(shù)列的性質(zhì)得出a1a4=a【詳解】由等比數(shù)列的公比q為整數(shù),得到a2由等比數(shù)列的性質(zhì)得出a1a4=a2aSn=a11-qnS8=2所以,數(shù)列l(wèi)gan是以故選:D.【點(diǎn)睛】本題考查等比數(shù)列基本性質(zhì)的應(yīng)用,考查等比數(shù)列求和以及等比數(shù)列的定義,充分利用等比數(shù)列下標(biāo)相關(guān)的性質(zhì),將項(xiàng)的積進(jìn)行轉(zhuǎn)化,能起到簡(jiǎn)化計(jì)算的作用,考查計(jì)算能力,屬于中等題。2、D【解析】
由三視圖可知,得到該幾何體是由兩個(gè)圓錐組成的組合體,根據(jù)幾何體的表面積公式,即可求解.【詳解】由三視圖可知,該幾何體是由兩個(gè)圓錐組成的組合體,其中圓錐的底面半徑為3,高為4,所以幾何體的表面為.選D.【點(diǎn)睛】本題考查了幾何體的三視圖及表面積的計(jì)算,在由三視圖還原為空間幾何體的實(shí)際形狀時(shí),要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實(shí)線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解.3、A【解析】由題意得,方程的兩根之和,畫出約束條件所表示的平面區(qū)域,如圖所示,由,可得,此時(shí),由,可得,此時(shí),故選A.4、A【解析】
根據(jù)題意得,我們逐個(gè)分析四個(gè)選項(xiàng)中函數(shù)的格點(diǎn)個(gè)數(shù),即可得到答案.【詳解】根據(jù)題意得:函數(shù)y=sinx圖象上只有(0,0)點(diǎn)橫、縱坐標(biāo)均為整數(shù),故A為一階格點(diǎn)函數(shù);函數(shù)沒有橫、縱坐標(biāo)均為整數(shù),故B為零階格點(diǎn)函數(shù);函數(shù)y=lgx的圖象有(1,0),(10,1),(100,2),…無數(shù)個(gè)點(diǎn)橫、縱坐標(biāo)均為整數(shù),故C為無窮階格點(diǎn)函數(shù);函數(shù)y=x2的圖象有…(﹣1,0),(0,0),(1,1),…無數(shù)個(gè)點(diǎn)橫、縱坐標(biāo)均為整數(shù),故D為無窮階格點(diǎn)函數(shù).故選A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是函數(shù)的圖象與圖象變化,其中分析出函數(shù)的格點(diǎn)個(gè)數(shù)是解答本題的關(guān)鍵,屬于中檔題.5、D【解析】
由平面向量基本定理和向量運(yùn)算求解即可【詳解】根據(jù)題意得:,又,,所以.故選D.【點(diǎn)睛】本題主要考查了平面向量的基本定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.6、A【解析】
根據(jù)誘導(dǎo)公式化簡(jiǎn)解析式,由正切函數(shù)的定義域求出此函數(shù)的定義域.【詳解】由題意得,y=tan(–2x)=–tan(2x–),由2x–(k∈Z)得,x≠+,k∈Z,所以函數(shù)的定義域是{x|x≠+,k∈Z},故選:A.【點(diǎn)睛】本題考查正切函數(shù)的定義域,以及誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.7、D【解析】
根據(jù)正弦函數(shù)的性質(zhì),對(duì)任意(i,j=1,2,3,…,n),都有,因此要使得滿足條件的n最小,則盡量讓更多的取值對(duì)應(yīng)的點(diǎn)是最值點(diǎn),然后再對(duì)應(yīng)圖象取值.【詳解】,因?yàn)檎液瘮?shù)對(duì)任意(i,j=1,2,3,…,n),都有,要使n取得最小值,盡可能多讓(i=1,2,3,…,n)取得最高點(diǎn),因?yàn)?,所以要使得滿足條件的n最小,如圖所示則需取,,,,,,即取,,,,,,即.故選:D【點(diǎn)睛】本題主要考查正弦函數(shù)的圖象,還考查了數(shù)形結(jié)合的思想方法,屬于中檔題.8、C【解析】對(duì)于A、B、D均可能出現(xiàn),而對(duì)于C是正確的.9、D【解析】
根據(jù)等差數(shù)列片段和成等差數(shù)列,可得到,代入求得結(jié)果.【詳解】由等差數(shù)列性質(zhì)知:,,,成等差數(shù)列,即:本題正確選項(xiàng):【點(diǎn)睛】本題考查等差數(shù)列片段和性質(zhì)的應(yīng)用,關(guān)鍵是根據(jù)片段和成等差數(shù)列得到項(xiàng)之間的關(guān)系,屬于基礎(chǔ)題.10、C【解析】設(shè)正方體的棱長為a,則=8,∴a=2.而此正方體的內(nèi)切球直徑為2,∴S表=4π=4π.選C.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
分式上下為的二次多項(xiàng)式,故上下同除以進(jìn)行分析.【詳解】由題,,又,故.
故答案為:3.【點(diǎn)睛】本題考查了分式型多項(xiàng)式的極限問題,注意:當(dāng)時(shí),12、【解析】
根據(jù)等比數(shù)列的性質(zhì),可得,即可求解.【詳解】由題意,根據(jù)等比數(shù)列的性質(zhì),可得,解得.故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的性質(zhì)的應(yīng)用,其中解答熟記等比數(shù)列的性質(zhì),準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.13、②③【解析】
命題①:對(duì)于函數(shù),設(shè),故和可能相等,也可能互為相反數(shù),即命題①錯(cuò)誤;命題②:假設(shè),因?yàn)楹癁閱魏瘮?shù),所以,與已知矛盾,故,即命題②正確;命題③:若為單函數(shù),則對(duì)于任意,,假設(shè)不只有一個(gè)原象與其對(duì)應(yīng),設(shè)為,則,根據(jù)單函數(shù)定義,,又因?yàn)樵笾性夭恢貜?fù),故函數(shù)至多有一個(gè)原象,即命題③正確;命題④:函數(shù)在某區(qū)間上具有單調(diào)性,并不意味著在整個(gè)定義域上具有單調(diào)性,即命題④錯(cuò)誤,綜上可知,真命題為②③.故答案為②③.14、【解析】
利用同角三角函數(shù)平方關(guān)系,易將函數(shù)化為二次型的函數(shù),結(jié)合余弦函數(shù)的性質(zhì),及函數(shù)在上的最大值為1,易求出的值.【詳解】函數(shù)又函數(shù)在上的最大值為1,≤0,又,且在上單調(diào)遞增,所以即.故答案為:【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是三角函數(shù)的最值,其中利用同角三角函數(shù)平方關(guān)系,將函數(shù)化為二次型的函數(shù),是解答本題的關(guān)鍵,屬于中檔題.15、【解析】分析:首先根據(jù)等差數(shù)列的性質(zhì)得到,利用分?jǐn)?shù)的性質(zhì),將項(xiàng)的比值轉(zhuǎn)化為和的比值,從而求得結(jié)果.詳解:根據(jù)題意有,所以答案是.點(diǎn)睛:該題考查的是有關(guān)等差數(shù)列的性質(zhì)的問題,將兩個(gè)等差數(shù)列的項(xiàng)的比值可以轉(zhuǎn)化為其和的比值,結(jié)論為,從而求得結(jié)果.16、【解析】
將向量進(jìn)行等量代換,然后做出對(duì)應(yīng)圖形,利用平面向量基本定理進(jìn)行表示即可.【詳解】解:設(shè),則根據(jù)題意可得,,如圖所示,作,垂足分別為,則又,,故答案為.【點(diǎn)睛】本題考查了平面向量基本定理及其意義,兩個(gè)向量的加減法及其幾何意義,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(I);(II)或.【解析】
(I)先求得相交弦所在的直線方程,再求得圓的圓心到相交弦所在直線的距離,然后利用直線和圓相交所得弦長公式,計(jì)算出弦長.(II)先求得當(dāng)時(shí),取得最大值,根據(jù)兩直線垂直時(shí)斜率的關(guān)系,求得直線的方程,聯(lián)立直線的方程和圓的方程,求得點(diǎn)的坐標(biāo),由此求得直線的斜率,進(jìn)而求得直線的方程.【詳解】(I)由圓O與圓C方程相減可知,相交弦PQ的方程為.點(diǎn)(0,0)到直線PQ的距離,(Ⅱ),.當(dāng)時(shí),取得最大值.此時(shí),又則直線NC為.由,或當(dāng)點(diǎn)時(shí),,此時(shí)MN的方程為.當(dāng)點(diǎn)時(shí),,此時(shí)MN的方程為.∴MN的方程為或.【點(diǎn)睛】本小題主要考查圓與圓相交所得弦長的求法,考查三角形面積公式,考查直線與圓相交交點(diǎn)坐標(biāo)的求法,考查直線方程的求法,考查兩直線垂直時(shí)斜率的關(guān)系,綜合性較強(qiáng),屬于中檔題.18、(1)(2)【解析】
(1)把兩圓方程相減得到公共弦所在直線方程,再根據(jù)點(diǎn)到直線距離公式與圓的垂徑定理求兩圓的公共弦長;(2)根據(jù)圓的切線長與半徑的關(guān)系代入化簡(jiǎn)即可得到點(diǎn)的軌跡方程,進(jìn)而求解.【詳解】解:(1)由,相減得兩圓的公共弦所在直線方程為:,設(shè)(0,0)到的距離為,則所以,公共弦長為所以,公共弦長為.(2)證明:由題設(shè)得:化簡(jiǎn)得:配方得:所以,存在定點(diǎn)使得到的距離為定值,且該定值為.【點(diǎn)睛】本題主要考查圓的應(yīng)用.求兩圓的公共弦關(guān)鍵在求公共弦所在直線方程;求動(dòng)點(diǎn)與定點(diǎn)距離問題,首先要求出動(dòng)點(diǎn)的軌跡方程.19、(1),;(2).【解析】
(1)根據(jù),即可得解;(2)根據(jù)公式計(jì)算求解.【詳解】(1)由題向量的夾角為60°,所以,,;(2),所以【點(diǎn)睛】此題考查平面向量數(shù)量積,根據(jù)定義計(jì)算兩個(gè)向量的數(shù)量積,求向量的模長和根據(jù)數(shù)量積與模長關(guān)系求向量夾角.20、(1)(2)30°或90°.【解析】
(1)解法一:將圓的方程設(shè)為一般式,將題干三個(gè)點(diǎn)代入圓的方程,解出相應(yīng)的參數(shù)值,即可得出圓的一般方程,再化為標(biāo)準(zhǔn)方程;解法二:求出線段和的中垂線方程,將兩中垂線方程聯(lián)立求出交點(diǎn)坐標(biāo),即為圓心坐標(biāo),然后計(jì)算為圓的半徑,即可寫出圓的標(biāo)準(zhǔn)方程;(2)先利用勾股定理計(jì)算出圓心到直線的距離為,并對(duì)直線的斜率是否存在進(jìn)行分類討論:一是直線的斜率不存在,得出直線的方程為,驗(yàn)算圓心到該直線的距離為;二是當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,并表示為一般式,利用圓心到直線的距離為得出關(guān)于的方程,求出的值.結(jié)合前面兩種情況求出直線的傾斜角.【詳解】(1)解法一:設(shè)圓的方程為,則∴即圓為,∴圓的標(biāo)準(zhǔn)方程為;解法二:則中垂線為,中垂線為,∴圓心滿足∴,半徑,∴圓的標(biāo)準(zhǔn)方程為.(2)①當(dāng)斜率不存在時(shí),即直線到圓心的距離為1,也滿足題意,此時(shí)直線的傾斜角為90°,②當(dāng)斜率存在時(shí),設(shè)直線的方程為,由弦長為4,可得圓心到直線的距離為,,∴,此時(shí)直線的傾斜角為30°,綜上所述,直線的傾斜角為30°或90°.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年環(huán)境保護(hù)法規(guī)考試試題與事故案例分析
- 2026年文獻(xiàn)綜述與論文寫作學(xué)術(shù)規(guī)范與研究方法題庫
- 2026年殘疾人就業(yè)市場(chǎng)現(xiàn)狀與未來趨勢(shì)題庫
- 2026年電子商務(wù)專業(yè)畢業(yè)論文題目參考
- 2026年金融風(fēng)險(xiǎn)管理師繼續(xù)教育衍生金融產(chǎn)品試題集及答案詳解
- 2026年金融產(chǎn)品知識(shí)試題投資理財(cái)產(chǎn)品介紹與風(fēng)險(xiǎn)評(píng)估
- 制造企業(yè)生產(chǎn)環(huán)境管理體系管理制度
- 礦山頂板管理安全管理制度
- 2026年無人機(jī)飛行操控員技能考核題庫及實(shí)操指南
- 2026年情感劇策劃師招聘筆試題目大全
- 安全教育培訓(xùn)管理制度及流程
- 麻醉科2025年度工作總結(jié)與2026年發(fā)展規(guī)劃
- 2026屆安徽省合肥一中八中、六中生物高一上期末聯(lián)考試題含解析
- 中西醫(yī)結(jié)合治療慢性病康復(fù)優(yōu)勢(shì)
- 診所醫(yī)生營銷培訓(xùn)課件
- 2026年開封大學(xué)單招職業(yè)傾向性測(cè)試題庫及答案詳解1套
- 2025遼寧葫蘆島市市直部分事業(yè)單位招聘高層次人才84人參考考試試題及答案解析
- 《小學(xué)數(shù)學(xué)課程與教學(xué)論》課程教學(xué)大綱
- 地下停車庫申請(qǐng)書范文
- 幼兒園教育活動(dòng)座位擺放指南
- 施工現(xiàn)場(chǎng)吊裝令標(biāo)準(zhǔn)格式模板
評(píng)論
0/150
提交評(píng)論