上海市黃埔區(qū)大境中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
上海市黃埔區(qū)大境中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
上海市黃埔區(qū)大境中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
上海市黃埔區(qū)大境中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
上海市黃埔區(qū)大境中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

上海市黃埔區(qū)大境中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在數(shù)列{an}中,若a1,且對任意的n∈N*有,則數(shù)列{an}前10項的和為()A. B. C. D.2.已知不等式的解集為,則不等式的解集為()A. B.C. D.3.已知某圓柱的底面周長為12,高為2,矩形是該圓柱的軸截面,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C.3 D.24.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點,則異面直線AE與BF所成角的余弦值為()A. B. C. D.5.有5支彩筆(除顏色外無差別),顏色分別為紅、黃、藍(lán)、綠、紫.從這5支彩筆中任取2支不同顏色的彩筆,則取出的2支彩筆中含有紅色彩筆的概率為A. B. C. D.6.連續(xù)擲兩次骰子,分別得到的點數(shù)作為點的坐標(biāo),則點落在圓內(nèi)的概率為A. B. C. D.7.如圖,飛機的航線和山頂在同一個鉛垂面內(nèi),若飛機的高度為海拔18km,速度為1000m/h,飛行員先看到山頂?shù)母┙菫椋?jīng)過1min后又看到山頂?shù)母┙菫?,則山頂?shù)暮0胃叨葹椋ň_到0.1km,參考數(shù)據(jù):)A.11.4km B.6.6km C.6.5km D.5.6km8.若且,則下列不等式成立的是()A. B. C. D.9.已知向量,,則,的夾角為()A. B. C. D.10.已知角的頂點在原點,始邊與軸的正半軸重合,終邊落在射線上,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.直線在軸上的截距是__________.12.已知的三邊分別是,且面積,則角__________.13.已知函數(shù)分別由下表給出:123211123321則當(dāng)時,_____________.14.等差數(shù)列中,公差.則與的等差中項是_____(用數(shù)字作答)15.若(),則_______(結(jié)果用反三角函數(shù)值表示).16.函數(shù)的定義域為__________;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知0<α<π,cos(1)求tanα+(2)求sin2α+118.已知等差數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)請確定是否是數(shù)列中的項?19.已知等差數(shù)列滿足,且是的等比中項.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和為,求使成立的最大正整數(shù)的值.20.已知數(shù)列的前n項和為,,.(1)證明:數(shù)列為等比數(shù)列;(2)證明:.21.已知,設(shè).(1)若圖象中相鄰兩條對稱軸間的距離不小于,求的取值范圍;(2)若的最小正周期為,且當(dāng)時,的最大值是,求的解析式,并說明如何由的圖象變換得到的圖象.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

用累乘法可得.利用錯位相減法可得S,即可求解S10=22.【詳解】∵,則.∴,.Sn,.∴,∴S,則S10=22.故選:A.【點評】本題考查了累乘法求通項,考查了錯位相減法求和,意在考查計算能力,屬于中檔題.2、B【解析】

首先根據(jù)題意得到,為方程的根,再解出的值帶入不等式即可.【詳解】有題知:,為方程的根.所以,解得.所以,解得:或.故選:B【點睛】本題主要考查二次不等式的求法,同時考查了學(xué)生的計算能力,屬于簡單題.3、A【解析】

由圓柱的側(cè)面展開圖是矩形,利用勾股定理求解.【詳解】圓柱的側(cè)面展開圖如圖,圓柱的側(cè)面展開圖是矩形,且矩形的長為12,寬為2,則在此圓柱側(cè)面上從到的最短路徑為線段,.故選:A.【點睛】本題考查圓柱側(cè)面展開圖中的最短距離問題,是基礎(chǔ)題.4、D【解析】

以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,再利用向量法求出異面直線AE與BF所成角的余弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,設(shè)正方體ABCD﹣A1B1C1D1中棱長為2,E,F(xiàn)分別是C1D1,CC1的中點,A(2,0,0),E(0,1,2),B(2,2,0),F(xiàn)(0,2,1),=(﹣2,1,2),=(﹣2,0,1),設(shè)異面直線AE與BF所成角的平面角為θ,則cosθ===,∴異面直線AE與BF所成角的余弦值為.故選D.【點睛】本題考查異面直線所成角的余弦值的求法,注意向量法的合理運用,屬于基礎(chǔ)題.5、C【解析】選取兩支彩筆的方法有種,含有紅色彩筆的選法為種,由古典概型公式,滿足題意的概率值為.本題選擇C選項.考點:古典概型名師點睛:對于古典概型問題主要把握基本事件的種數(shù)和符合要求的事件種數(shù),基本事件的種數(shù)要注意區(qū)別是排列問題還是組合問題,看抽取時是有、無順序,本題從這5支彩筆中任取2支不同顏色的彩筆,是組合問題,當(dāng)然簡單問題建議采取列舉法更直觀一些.6、B【解析】

由拋擲兩枚骰子得到點的坐標(biāo)共有36種,再利用列舉法求得點落在圓內(nèi)所包含的基本事件的個數(shù),利用古典概型的概率計算公式,即可求解.【詳解】由題意知,試驗發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點數(shù)作為點P的坐標(biāo),共有種結(jié)果,而滿足條件的事件是點P落在圓內(nèi),列舉出落在圓內(nèi)的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結(jié)果,根據(jù)古典概型概率公式,可得,故選B.【點睛】本題主要考查的是古典概型及其概率計算公式.,屬于基礎(chǔ)題.解題時要準(zhǔn)確理解題意,先要判斷該概率模型是不是古典概型,正確找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù),令古典概型及其概率的計算公式求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.7、C【解析】

根據(jù)題意求得和的長,然后利用正弦定理求得BC,最后利用求得問題答案.【詳解】在中,根據(jù)正弦定理,所以:山頂?shù)暮0胃叨葹?8-11.5=6.5km.故選:C【點睛】本題考查了正弦定理在實際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)應(yīng)用,轉(zhuǎn)化與劃歸,數(shù)學(xué)運算的能力,屬于中檔題.8、D【解析】

利用不等式的性質(zhì)對四個選項逐一判斷.【詳解】選項A:,符合,但不等式不成立,故本選項是錯誤的;選項B:當(dāng)符合已知條件,但零沒有倒數(shù),故不成立,故本選項是錯誤的;選項C:當(dāng)時,不成立,故本選項是錯誤的;選項D:因為,所以根據(jù)不等式的性質(zhì),由能推出,故本選項是正確的,因此本題選D.【點睛】本題考查了不等式的性質(zhì),結(jié)合不等式的性質(zhì),舉特例是解決這類問題的常見方法.9、A【解析】

由題意得,即可得,再結(jié)合即可得解.【詳解】由題意知,則.,則,的夾角為.故選:A.【點睛】本題考查了向量數(shù)量積的應(yīng)用,屬于基礎(chǔ)題.10、D【解析】

在的終邊上取點,然后根據(jù)三角函數(shù)的定義可求得答案.【詳解】在的終邊上取點,則,根據(jù)三角形函數(shù)的定義得.故選:D【點睛】本題考查了利用角的終邊上的點的坐標(biāo)求三角函數(shù)值,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

把直線方程化為斜截式,可得它在軸上的截距.【詳解】解:直線,即,故它在軸上的截距是4,故答案為:.【點睛】本題主要考查直線方程的幾種形式,屬于基礎(chǔ)題.12、【解析】試題分析:由,可得,整理得,即,所以.考點:余弦定理;三角形的面積公式.13、3【解析】

根據(jù)已知,用換元法,從外層求到里層,即可求解.【詳解】令.故答案為:.【點睛】本題考查函數(shù)的表示,考查復(fù)合函數(shù)值求參數(shù),換元法是解題的關(guān)鍵,屬于基礎(chǔ)題.14、5【解析】

根據(jù)等差中項的性質(zhì),以及的值,求出的值即是所求.【詳解】根據(jù)等差中項的性質(zhì)可知,的等差中項是,故.【點睛】本小題主要考查等差中項的性質(zhì),考查等差數(shù)列基本量的計算,屬于基礎(chǔ)題.15、【解析】

根據(jù)反三角函數(shù)以及的取值范圍,求得的值.【詳解】由于,所以,所以.故答案為:【點睛】本小題主要考查已知三角函數(shù)值求角,考查反三角函數(shù),屬于基礎(chǔ)題.16、【解析】

根據(jù)偶次被開方數(shù)大于等于零,分母不為零,列出不等式組,解出即可.【詳解】依題意可得,,解得即,故函數(shù)的定義域為.故答案為:.【點睛】本題主要考查函數(shù)定義域的求法,涉及三角不等式的解法,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)12;(2)1【解析】

(1)利用同角三角函數(shù)平方和商數(shù)關(guān)系求得tanα;利用兩角和差正切公式求得結(jié)果;(2)利用二倍角公式化簡所求式子,分子分母同時除以cos2α【詳解】(1)∵0<α<π,cosα=-3∴tanα=(2)sin=【點睛】本題考查利用同角三角函數(shù)、兩角和差正切公式、二倍角的正余弦公式化簡求值問題,關(guān)鍵是能夠利用求解關(guān)于正余弦的齊次式的方式,將問題轉(zhuǎn)化為與tanα18、(1)(2)是數(shù)列中的第項【解析】

(1)直接利用等差數(shù)列的公式計算得到通項公式.(2)將3998代入通項公式,是否有整數(shù)解.【詳解】(1)設(shè)數(shù)列的公差為,由題意有,解得則數(shù)列的通項公式為,(2)假設(shè)是數(shù)列中的項,有,得,故是數(shù)列中的第項【點睛】本題考查了等差數(shù)列的公式,屬于簡單題.19、(1)(2)8【解析】

(1)設(shè)等差數(shù)列的公差為,根據(jù)題意列出有關(guān)和的方程組,可解出和的值,從而可求出數(shù)列的通項公式;(2)先得出,利用裂項法求出數(shù)列的前項和,然后解不等式,可得出的取值范圍,于此可得出的最大值.【詳解】(1)設(shè)等差數(shù)列的公差為,,即,∴,是,的等比中項,∴,即,解得.∴數(shù)列的通項公式為;(2)由(1)得∴.由,得,∴使得成立的最大正整數(shù)的值為8.【點睛】本題考查等差數(shù)列的通項公式,考查裂項求和法,解等差數(shù)列的通項公式,一般是利用方程思想求出等差數(shù)列的首項和公差,利用這兩個基本兩求出等差數(shù)列的通項公式,考查運算求解能力,屬于中等題.20、(1)證明見解析(2)證明見解析【解析】

(1)將已知遞推式取倒數(shù)得,,再結(jié)合等比數(shù)列的定義,即可得證;(2)由(1)得,再利用基本不等式以及放縮法和等比數(shù)列的求和公式,結(jié)合不等式的性質(zhì),即可得證.【詳解】(1),,可得,即有,可得數(shù)列為公比為2,首項為2的等比數(shù)列;(2)由(1)可得,即,由基本不等式可得,,即有.【點睛】本題考查等比數(shù)列的定義和通項公式、求和公式、考查構(gòu)造數(shù)列法以及放縮法的運用,考查化簡運算能力和推理能力,屬于中檔題.21、(1);(2);平移變換過程見解析.【解析】

(1)根據(jù)平面向量的坐標(biāo)運算,表示出的解析式,結(jié)合輔助角公式化簡三角函數(shù)式.結(jié)合相鄰兩條對稱軸間的距離不小于及周期公式,即可求得的取值范圍;(2)根據(jù)最小正周期,求得的值.代入解析式,結(jié)合正弦

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論