版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省大石橋市2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限2.已知⊙O及⊙O外一點P,過點P作出⊙O的一條切線(只有圓規(guī)和三角板這兩種工具),以下是甲、乙兩同學(xué)的作業(yè):甲:①連接OP,作OP的垂直平分線l,交OP于點A;②以點A為圓心、OA為半徑畫弧、交⊙O于點M;③作直線PM,則直線PM即為所求(如圖1).乙:①讓直角三角板的一條直角邊始終經(jīng)過點P;②調(diào)整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點落在⊙O上,記這時直角頂點的位置為點M;③作直線PM,則直線PM即為所求(如圖2).對于兩人的作業(yè),下列說法正確的是()A.甲乙都對 B.甲乙都不對C.甲對,乙不對 D.甲不對,已對3.在如圖所示的正方形網(wǎng)格中,網(wǎng)格線的交點稱為格點,已知A、B是兩格點,如果C也是圖中的格點,且使得△ABC為等腰直角三角形,則這樣的點C有()A.6個 B.7個 C.8個 D.9個4.下列二次函數(shù)的圖象,不能通過函數(shù)y=3x2的圖象平移得到的是(
)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x25.剪紙是水族的非物質(zhì)文化遺產(chǎn)之一,下列剪紙作品是中心對稱圖形的是()A. B.C. D.6.如圖,將RtABC繞直角項點C順時針旋轉(zhuǎn)90°,得到A'B'C,連接AA',若∠1=20°,則∠B的度數(shù)是()A.70° B.65° C.60° D.55°7.甲、乙兩名同學(xué)進(jìn)行跳高測試,每人10次跳高的平均成績恰好都是1.6米,方差分別是S甲2=A.甲 B.乙 C.甲乙同樣穩(wěn)定 D.無法確定8.已知某校女子田徑隊23人年齡的平均數(shù)和中位數(shù)都是13歲,但是后來發(fā)現(xiàn)其中一位同學(xué)的年齡登記錯誤,將14歲寫成15歲,經(jīng)重新計算后,正確的平均數(shù)為a歲,中位數(shù)為b歲,則下列結(jié)論中正確的是()A.a(chǎn)<13,b=13B.a(chǎn)<13,b<13C.a(chǎn)>13,b<13D.a(chǎn)>13,b=139.已知點P(a,m),Q(b,n)都在反比例函數(shù)y=的圖象上,且a<0<b,則下列結(jié)論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n10.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°11.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為()A. B. C. D.12.不等式組的解集在數(shù)軸上可表示為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_(dá)____________米(結(jié)果保留根號).14.寫出一個大于3且小于4的無理數(shù):___________.15.已知且,則=__________.16.已知x(x+1)=x+1,則x=________.17.如圖,點A、B、C在⊙O上,⊙O半徑為1cm,∠ACB=30°,則的長是________.18.矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內(nèi)部,點E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數(shù)___________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知△ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F.求證:△ABE≌△CAD;求∠BFD的度數(shù).20.(6分)如圖,AB是⊙O的直徑,點C是AB延長線上的點,CD與⊙O相切于點D,連結(jié)BD、AD.(1)求證;∠BDC=∠A.(2)若∠C=45°,⊙O的半徑為1,直接寫出AC的長.21.(6分)計算:|﹣1|+(﹣1)2018﹣tan60°22.(8分)某公司銷售一種新型節(jié)能電子小產(chǎn)品,現(xiàn)準(zhǔn)備從國內(nèi)和國外兩種銷售方案中選擇一種進(jìn)行銷售:①若只在國內(nèi)銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y=-x+150,成本為20元/件,月利潤為W內(nèi)(元);②若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷量為x(件)時,每月還需繳納x2元的附加費,月利潤為W外(元).(1)若只在國內(nèi)銷售,當(dāng)x=1000(件)時,y=(元/件);(2)分別求出W內(nèi)、W外與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);(3)若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值.23.(8分)如圖,已知AD是的中線,M是AD的中點,過A點作,CM的延長線與AE相交于點E,與AB相交于點F.(1)求證:四邊形是平行四邊形;(2)如果,求證四邊形是矩形.24.(10分)在直角坐標(biāo)系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點D為OB的中點,點E是線段AB上的動點,連結(jié)DE,作DF⊥DE,交OA于點F,連結(jié)EF.已知點E從A點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設(shè)移動時間為t秒.如圖1,當(dāng)t=3時,求DF的長.如圖2,當(dāng)點E在線段AB上移動的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.連結(jié)AD,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時,求相應(yīng)的t的值.25.(10分)如圖,甲、乙兩座建筑物的水平距離為,從甲的頂部處測得乙的頂部處的俯角為,測得底部處的俯角為,求甲、乙建筑物的高度和(結(jié)果取整數(shù)).參考數(shù)據(jù):,.26.(12分)如圖1,在平面直角坐標(biāo)系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點A(1,0)和點D(﹣4,5),并與y軸交于點C,拋物線的對稱軸為直線x=﹣1,且拋物線與x軸交于另一點B.(1)求該拋物線的函數(shù)表達(dá)式;(2)若點E是直線下方拋物線上的一個動點,求出△ACE面積的最大值;(3)如圖2,若點M是直線x=﹣1的一點,點N在拋物線上,以點A,D,M,N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點M的坐標(biāo);若不能,請說明理由.27.(12分)已知關(guān)于的方程mx2+(2m-1)x+m-1=0(m≠0).求證:方程總有兩個不相等的實數(shù)根;若方程的兩個實數(shù)根都是整數(shù),求整數(shù)的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】【分析】一次函數(shù)y=kx+b的圖象經(jīng)過第幾象限,取決于k和b.當(dāng)k>0,b>O時,圖象過一、二、三象限,據(jù)此作答即可.【詳解】∵一次函數(shù)y=3x+1的k=3>0,b=1>0,∴圖象過第一、二、三象限,故選A.【點睛】一次函數(shù)y=kx+b的圖象經(jīng)過第幾象限,取決于x的系數(shù)和常數(shù)項.2、A【解析】
(1)連接OM,OA,連接OP,作OP的垂直平分線l可得OA=MA=AP,進(jìn)而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切線,(1)直角三角板的一條直角邊始終經(jīng)過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切線.【詳解】證明:(1)如圖1,連接OM,OA.∵連接OP,作OP的垂直平分線l,交OP于點A,∴OA=AP.∵以點A為圓心、OA為半徑畫弧、交⊙O于點M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切線;(1)如圖1.∵直角三角板的一條直角邊始終經(jīng)過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切線.故兩位同學(xué)的作法都正確.故選A.【點睛】本題考查了復(fù)雜的作圖,重點是運(yùn)用切線的判定來說明作法的正確性.3、A【解析】
根據(jù)題意,結(jié)合圖形,分兩種情況討論:①AB為等腰△ABC底邊;②AB為等腰△ABC其中的一條腰.【詳解】如圖:分情況討論:①AB為等腰直角△ABC底邊時,符合條件的C點有2個;②AB為等腰直角△ABC其中的一條腰時,符合條件的C點有4個.故選:C.【點睛】本題考查了等腰三角形的判定;解答本題關(guān)鍵是根據(jù)題意,畫出符合實際條件的圖形,再利用數(shù)學(xué)知識來求解.?dāng)?shù)形結(jié)合的思想是數(shù)學(xué)解題中很重要的解題思想.4、D【解析】分析:根據(jù)平移變換只改變圖形的位置不改變圖形的形狀與大小對各選項分析判斷后利用排除法求解:A、y=3x2的圖象向上平移2個單位得到y(tǒng)=3x2+2,故本選項錯誤;B、y=3x2的圖象向右平移1個單位得到y(tǒng)=3(x﹣1)2,故本選項錯誤;C、y=3x2的圖象向右平移1個單位,向上平移2個單位得到y(tǒng)=3(x﹣1)2+2,故本選項錯誤;D、y=3x2的圖象平移不能得到y(tǒng)=2x2,故本選項正確.故選D.5、D【解析】
根據(jù)把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心進(jìn)行分析即可.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、是中心對稱圖形,故此選項正確;故選:D.【點睛】此題主要考查了中心對稱圖形,關(guān)鍵是掌握中心對稱圖形的定義.6、B【解析】
根據(jù)圖形旋轉(zhuǎn)的性質(zhì)得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,從而得∠AA′C=45°,結(jié)合∠1=20°,即可求解.【詳解】∵將RtABC繞直角項點C順時針旋轉(zhuǎn)90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故選B.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),等腰三角形和直角三角形的性質(zhì),掌握等腰三角形和直角三角形的性質(zhì)定理,是解題的關(guān)鍵.7、A【解析】
根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙兩名同學(xué)成績更穩(wěn)定的是甲;故選A.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.8、A【解析】試題解析:∵原來的平均數(shù)是13歲,∴13×23=299(歲),∴正確的平均數(shù)a=299-12∵原來的中位數(shù)13歲,將14歲寫成15歲,最中間的數(shù)還是13歲,∴b=13;故選A.考點:1.平均數(shù);2.中位數(shù).9、D【解析】
根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【點睛】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<1時,圖象位于二四象限是解題關(guān)鍵.10、C【解析】
如圖,根據(jù)長方形的性質(zhì)得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等,準(zhǔn)確識圖是解題的關(guān)鍵.11、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點:1.切線的性質(zhì);3.矩形的性質(zhì).12、A【解析】
先求出每個不等式的解集,再求出不等式組的解集即可.【詳解】解:∵不等式①得:x>1,解不等式②得:x≤2,∴不等式組的解集為1<x≤2,在數(shù)軸上表示為:,故選A.【點睛】本題考查了解一元一次不等式組和在數(shù)軸上表示不等式組的解集,能根據(jù)不等式的解集找出不等式組的解集是解此題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】設(shè)出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應(yīng)用,太陽光線下物體影子的長短不僅與物體有關(guān),而且與時間有關(guān),不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關(guān)鍵是根據(jù)三角函數(shù)的幾何意義得出各線段的比例關(guān)系,從而得出答案.14、如等,答案不唯一.【解析】
本題考查無理數(shù)的概念.無限不循環(huán)小數(shù)叫做無理數(shù).介于和之間的無理數(shù)有無窮多個,因為,故而9和16都是完全平方數(shù),都是無理數(shù).15、【解析】分析:根據(jù)相似三角形的面積比等于相似比的平方求解即可.詳解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.點睛:本題的關(guān)鍵是理解相似三角形的面積比等于相似比的平方.16、1或-1【解析】方程可化為:,∴或,∴或.故答案為1或-1.17、.【解析】
根據(jù)圓周角定理可得出∠AOB=60°,再根據(jù)弧長公式的計算即可.【詳解】∵∠ACB=30°,
∴∠AOB=60°,
∵OA=1cm,
∴的長=cm.故答案為:.【點睛】本題考查了弧長的計算以及圓周角定理,解題關(guān)鍵是掌握弧長公式l=.18、3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,繼而可確定點P在BD上,然后再根據(jù)△APD是等腰三角形,分DP=DA、AP=DP兩種情況進(jìn)行討論即可得.【詳解】∵四邊形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴點P在BD上,如圖1,當(dāng)DP=DA=8時,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如圖2,當(dāng)AP=DP時,此時P為BD中點,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;綜上,PE的長為1.2或3,故答案為:1.2或3.【點睛】本題考查了相似三角形的性質(zhì),等腰三角形的性質(zhì),矩形的性質(zhì)等,確定出點P在線段BD上是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2).【解析】試題分析:(1)根據(jù)等邊三角形的性質(zhì)根據(jù)SAS即可證明△ABE≌△CAD;(2)由三角形全等可以得出∠ABE=∠CAD,由外角與內(nèi)角的關(guān)系就可以得出結(jié)論.試題解析:(1)∵△ABC為等邊三角形,∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.在△ABE和△CAD中,AB=CA,∠BAC=∠C,AE=CD,∴△ABE≌△CAD(SAS),(2)∵△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BAD+∠CAD=60°,∴∠BAD+∠EBA=60°,∵∠BFD=∠ABE+∠BAD,∴∠BFD=60°.20、(1)詳見解析;(2)1+【解析】
(1)連接OD,結(jié)合切線的性質(zhì)和直徑所對的圓周角性質(zhì),利用等量代換求解(2)根據(jù)勾股定理先求OC,再求AC.【詳解】(1)證明:連結(jié).如圖,與相切于點D,是的直徑,即(2)解:在中,.【點睛】此題重點考查學(xué)生對圓的認(rèn)識,熟練掌握圓的性質(zhì)是解題的關(guān)鍵.21、1【解析】
原式利用絕對值的代數(shù)意義,乘方的意義,以及特殊角的三角函數(shù)值計算即可求出值.【詳解】|﹣1|+(﹣1)2118﹣tan61°=﹣1+1﹣=1.【點睛】本題考查了實數(shù)的運(yùn)算,涉及了絕對值化簡、特殊角的三角函數(shù)值,熟練掌握各運(yùn)算的運(yùn)算法則是解題的關(guān)鍵.22、(1)140;(2)W內(nèi)=-x2+130x,W外=-x2+(150-a)x;(3)a=1.【解析】試題分析:(1)將x=1000代入函數(shù)關(guān)系式求得y,;(2)根據(jù)等量關(guān)系“利潤=銷售額﹣成本”“利潤=銷售額﹣成本﹣附加費”列出函數(shù)關(guān)系式;(3)對w內(nèi)函數(shù)的函數(shù)關(guān)系式求得最大值,再求出w外的最大值并令二者相等求得a值.試題解析:(1)x=1000,y=-×1000+150=140;(2)W內(nèi)=(y-1)x=(-x+150-1)x=-x2+130x.W外=(150-a)x-x2=-x2+(150-a)x;(3)W內(nèi)=-x2+130x=-(x-6500)2+2,由W外=-x2+(150-a)x得:W外最大值為:(750-5a)2,所以:(750-5a)2=2.解得a=280或a=1.經(jīng)檢驗,a=280不合題意,舍去,∴a=1.考點:二次函數(shù)的應(yīng)用.23、(1)見解析;(2)見解析.【解析】
(1)先判定,可得,再根據(jù)是的中線,即可得到,依據(jù),即可得出四邊形是平行四邊形;(2)先判定,即可得到,依據(jù),可得根據(jù)是的中線,可得,進(jìn)而得出四邊形是矩形.【詳解】證明:(1)是的中點,,,,又,,,又是的中線,,又,四邊形是平行四邊形;(2),,∴,即,,又,,又是的中線,,又四邊形是平行四邊形,四邊形是矩形.【點睛】本題主要考查了平行四邊形、矩形的判定,等腰三角形的性質(zhì)以及相似三角形的性質(zhì)的運(yùn)用,解題時注意:對角線相等的平行四邊形是矩形.24、(1)3;(2)∠DEF的大小不變,tan∠DEF=;(3)或.【解析】
(1)當(dāng)t=3時,點E為AB的中點,∵A(8,0),C(0,6),∴OA=8,OC=6,∵點D為OB的中點,∴DE∥OA,DE=OA=4,∵四邊形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四邊形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不變;理由如下:作DM⊥OA于M,DN⊥AB于N,如圖2所示:∵四邊形OABC是矩形,∴OA⊥AB,∴四邊形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,,∵點D為OB的中點,∴M、N分別是OA、AB的中點,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴,∵∠EDF=90°,∴tan∠DEF=;(3)作DM⊥OA于M,DN⊥AB于N,若AD將△DEF的面積分成1:2的兩部分,設(shè)AD交EF于點G,則點G為EF的三等分點;①當(dāng)點E到達(dá)中點之前時,如圖3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵點G為EF的三等分點,∴G(,),設(shè)直線AD的解析式為y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直線AD的解析式為y=﹣x+6,把G(,)代入得:t=;②當(dāng)點E越過中點之后,如圖4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵點G為EF的三等分點,∴G(,),代入直線AD的解析式y(tǒng)=﹣x+6得:t=;綜上所述,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時,t的值為或.考點:四邊形綜合題.25、甲建筑物的高度約為,乙建筑物的高度約為.【解析】分析:首先分析圖形:根據(jù)題意構(gòu)造直角三角形;本題涉及兩個直角三角形,應(yīng)利用其公共邊構(gòu)造關(guān)系式,進(jìn)而可求出答案.詳解:如圖,過點作,垂足為.則.由題意可知,,,,,.可得四邊形為矩形.∴,.在中,,∴.在中,,∴.∴.∴.答:甲建筑物的高度約為,乙建筑物的高度約為.點睛:本題考查解直角三角形的應(yīng)用--仰角俯角問題,首先構(gòu)造直角三角形,再借助角邊關(guān)系、三角函數(shù)的定義解題,難度一般.26、(1)y=x2+2x﹣3;(2);(3)詳見解析.【解析】試題分析:(1)先利用拋物線的對稱性確定出點B的坐標(biāo),然后設(shè)拋物線的解析式為y=a(x+3)(x-1),將點D的坐標(biāo)代入求得a的值即可;(2)過點E作EF∥y軸,交AD與點F,過點C作CH⊥EF,垂足為H.設(shè)點E(m,m2+2m-3),則F(m,-m+1),則EF=-m2-3m+4,然后依據(jù)△ACE的面積=△EFA的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲部員工實踐培訓(xùn)制度
- 駕駛培訓(xùn)學(xué)校員工工作制度
- 集團(tuán)化幫扶園培訓(xùn)制度
- 環(huán)境保護(hù)培訓(xùn)教育制度
- 建立培訓(xùn)組織管理制度
- 幼兒園健康管理培訓(xùn)制度及流程
- 體育教師崗位培訓(xùn)制度
- 培訓(xùn)工作人員考核制度
- 小學(xué)學(xué)校外出培訓(xùn)制度
- 培訓(xùn)學(xué)校工作責(zé)任制度
- 【語文】青島市小學(xué)三年級上冊期末試卷(含答案)
- 老年人靜脈輸液技巧
- 呼吸內(nèi)科一科一品護(hù)理匯報
- 2025年公安機(jī)關(guān)人民警察基本級執(zhí)法資格考試試卷及答案
- 網(wǎng)戀詐騙課件
- 2025版壓力性損傷預(yù)防和治療的新指南解讀
- 2025年新疆第師圖木舒克市公安局招聘警務(wù)輔助人員公共基礎(chǔ)知識+寫作綜合練習(xí)題及答案
- 醫(yī)院患者護(hù)理隱患預(yù)警及上報制度
- 2026年春節(jié)放假通知模板范文
- 非電量保護(hù)培訓(xùn)
- 2025年高考真題分類匯編必修三 《政治與法治》(全國)(解析版)
評論
0/150
提交評論