版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省瀘州市市合江縣合江天立學(xué)校高2025屆高一下數(shù)學(xué)期末經(jīng)典試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知與均為單位向量,它們的夾角為,那么等于()A. B. C. D.42.已知圓,圓,則圓與圓的位置關(guān)系是()A.相離 B.相交 C.外切 D.內(nèi)切3.已知圓柱的軸截面為正方形,且該圓柱的側(cè)面積為,則該圓柱的體積為A. B. C. D.4.已知數(shù)列1,,,9是等差數(shù)列,數(shù)列1,,,,9是等比數(shù)列,則()A. B. C. D.5.等差數(shù)列中,若,則=()A.11 B.7 C.3 D.26.將函數(shù)f(x)=sin(ωx+)(ω>0)的圖象向左平移個單位,所得到的函數(shù)圖象關(guān)于y軸對稱,則函數(shù)f(x)的最小正周期不可能是()A. B. C. D.7.不等式的解集是()A. B.C.或 D.或8.已知向量,滿足:則A. B. C. D.9.已知等邊三角形ABC的邊長為1,,那么().A.3 B.-3 C. D.10.若,則是()A.等邊三角形 B.等腰三角形C.直角或等腰三角形 D.等腰直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.已知x,y=R+,且滿足x2y6,若xy的最大值與最小值分別為M和m,M+m=_____.12.如圖,為內(nèi)一點,且,延長交于點,若,則實數(shù)的值為_______.13.已知直線l過定點,且與兩坐標(biāo)軸圍成的三角形的面積為4,則直線l的方程為______.14.已知三棱柱的側(cè)棱與底面邊長都相等,在底面內(nèi)的射影為的中心,則與底面所成角的正弦值等于.15.計算:=_______________.16.當(dāng)函數(shù)取得最大值時,=__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)數(shù)列為等比數(shù)列,且,,(1)求數(shù)列的通項公式:(2)設(shè),數(shù)列的前項和,求證:.18.在中,角的對邊分別為,且.(1)求角的大??;(2)若,求的最大值.19.在中,內(nèi)角A,B,C的對邊分別是ɑ,b,c,已知,.(1)求角C;(2)求面積的最大值.20.如圖,在三棱錐P-ABC中,PA⊥底面ABC,D是PC的中點.已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱錐P-ABC的體積;(2)異面直線BC與AD所成的角的大?。ńY(jié)果用反三角函數(shù)值表示).21.已知,,且(1)求的定義域.(2)判斷的奇偶性,并說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】本題主要考查的是向量的求模公式.由條件可知==,所以應(yīng)選A.2、C【解析】,,,,,即兩圓外切,故選.點睛:判斷圓與圓的位置關(guān)系的常見方法(1)幾何法:利用圓心距與兩半徑和與差的關(guān)系.(2)切線法:根據(jù)公切線條數(shù)確定.(3)數(shù)形結(jié)合法:直接根據(jù)圖形確定3、C【解析】
設(shè)圓柱的底面半徑,該圓柱的高為,利用側(cè)面積得到半徑,再計算體積.【詳解】設(shè)圓柱的底面半徑.因為圓柱的軸截面為正方形,所以該圓柱的高為因為該圓柱的側(cè)面積為,所以,解得,故該圓柱的體積為.故答案選C【點睛】本題考查了圓柱的體積,意在考查學(xué)生的計算能力和空間想象能力.4、B【解析】
根據(jù)等差數(shù)列和等比數(shù)列性質(zhì)可分別求得,,代入即可得到結(jié)果.【詳解】由成等差數(shù)列得:由成等比數(shù)列得:,又與同號本題正確選項:【點睛】本題考查等差數(shù)列、等比數(shù)列性質(zhì)的應(yīng)用,易錯點是忽略等比數(shù)列奇數(shù)項符號相同的特點,從而造成增根.5、A【解析】
根據(jù)和已知條件即可得到.【詳解】等差數(shù)列中,故選A.【點睛】本題考查了等差數(shù)列的基本性質(zhì),屬于基礎(chǔ)題.6、D【解析】
利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,對稱性和周期性,求得函數(shù)的最小正周期為,由此得出結(jié)論.【詳解】解:將函數(shù)的圖象向左平移個單位,可得的圖象,根據(jù)所得到的函數(shù)圖象關(guān)于軸對稱,可得,即,.函數(shù)的最小正周期為,則函數(shù)的最小正周期不可能是,故選.【點睛】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,對稱性和周期性,屬于基礎(chǔ)題.7、B【解析】
由題意,∴,即,解得,∴該不等式的解集是,故選.8、D【解析】
利用向量的數(shù)量積運算及向量的模運算即可求出.【詳解】∵||=3,||=2,|+|=4,∴|+|2=||2+||2+2=16,∴2=3,∴|﹣|2=||2+||2﹣2=9+4﹣3=10,∴|﹣|=,故選D.【點睛】本題考查了向量的數(shù)量積運算和向量模的計算,屬于基礎(chǔ)題.9、D【解析】
利用向量的數(shù)量積即可求解.【詳解】解析:.故選:D【點睛】本題考查了向量的數(shù)量積,注意向量夾角的定義,屬于基礎(chǔ)題.10、D【解析】
先根據(jù)題中條件,結(jié)合正弦定理得到,求出角,同理求出角,進(jìn)而可判斷出結(jié)果.【詳解】因為,由正弦定理可得,所以,即,因為角為三角形內(nèi)角,所以;同理,;所以,因此,是等腰直角三角形.故選D【點睛】本題主要考查判定三角形的形狀問題,熟記正弦定理即可,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè),則,可得,然后利用基本不等式得到關(guān)于的一元二次方程解方程可得的最大值和最小值,進(jìn)而得到結(jié)論.【詳解】∵x,y=R+,設(shè),則,∴∴12t=(2t+2)x+(4t+1)y,∴18t≥(t+1)(4t+1)=4t2+5t+1,∴4t2﹣13t+1≤0,∴,∵xy的最大值與最小值分別為M和m,∴M,m,∴M+m.【點睛】本題考查了基本不等式的應(yīng)用和一元二次不等式的解法,考查了轉(zhuǎn)化思想和運算推理能力,屬于中檔題.12、【解析】
由,得,可得出,再利用、、三點共線的向量結(jié)論得出,可解出實數(shù)的值.【詳解】由,得,可得出,由于、、三點共線,,解得,故答案為.【點睛】本題考查三點共線問題的處理,解題的關(guān)鍵就是利用三點共線的向量等價條件的應(yīng)用,考查運算求解的能力,屬于中等題.13、或.【解析】
設(shè)直線的方程為,利用已知列出方程,①和②,解方程即可求出直線方程【詳解】設(shè)直線的方程為.因為點在直線上,所以①.因為直線與兩坐標(biāo)軸圍成的三角形的面積為4,所以②.由①②可知或解得或故直線的方程為或,即或.【點睛】本題考查截距式方程和直線與坐標(biāo)軸形成的三角形面積問題,屬于基礎(chǔ)題14、【解析】試題分析:由題意得,不妨設(shè)棱長為,如圖,在底面內(nèi)的射影為的中心,故,由勾股定理得,過作平面,則為與底面所成角,且,作于中點,所以,所以,所以與底面所成角的正弦值為.考點:直線與平面所成的角.15、【解析】試題分析:考點:兩角和的正切公式點評:本題主要考查兩角和的正切公式變形的運用,抓住和角是特殊角,是解題的關(guān)鍵.16、【解析】
利用輔助角將函數(shù)利用兩角差的正弦公式進(jìn)行化簡,求得函數(shù)取得最大值時的與的關(guān)系,從而求得,,可得結(jié)果.【詳解】因為函數(shù),其中,,當(dāng)時,函數(shù)取得最大值,此時,∴,,∴故答案為【點睛】本題考查了兩角差的正弦公式的逆用,著重考查輔助角公式的應(yīng)用與正弦函數(shù)的性質(zhì),屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】
(1)將已知條件轉(zhuǎn)化為等比數(shù)列的基本量和,得到的值,從而得到數(shù)列的通項;(2)根據(jù)題意寫出,然后得到數(shù)列的通項,利用列項相消法進(jìn)行求和,得到其前項和,然后進(jìn)行證明.【詳解】設(shè)等比數(shù)列的首項為,公比為,因為,所以,所以所以;(2),所以,所以.因為,所以.【點睛】本題考查等比數(shù)列的基本量計算,裂項相消法求數(shù)列的和,屬于簡單題.18、(1).(2)【解析】
(1)先利用正弦定理角化邊,然后根據(jù)余弦定理求角;(2)利用余弦定理以及基本不等式求解最值,注意取等號的條件.【詳解】解:(1)由正弦定理得,由余弦定理得,∴.又∵,∴.(2)由余弦定理得,即,化簡得,,即,當(dāng)且僅當(dāng)時,取等號.∴.【點睛】在三角形中,已知一角及其對邊,求解周長或者面積的最值的方法:未給定三角形形狀時,直接利用余弦定理和基本不等式求解最值;給定三角形形狀時,先求解角的范圍,然后根據(jù)正弦定理進(jìn)行轉(zhuǎn)化求解.19、(1);(2)【解析】
(1)利用正弦定理邊化角可求得,由的范圍可求得結(jié)果;(2)利用余弦定理和基本不等式可求得的最大值,代入三角形面積公式可求得結(jié)果.【詳解】(1)由正弦定理得:,即又(2)由余弦定理得:(當(dāng)且僅當(dāng)時取等號),即面積的最大值為【點睛】本題考查解三角形的相關(guān)知識,涉及到正弦定理邊化角的應(yīng)用、余弦定理解三角形、基本不等式求積的最大值、三角形面積公式的應(yīng)用;求解面積的最大值的關(guān)鍵是能夠在余弦定理的基礎(chǔ)上,利用基本不等式來求解兩邊之積的最大值.20、(1);(2).【解析】
(1),三棱錐P-ABC的體積為.(2)取PB的中點E,連接DE、AE,則ED∥BC,所以∠ADE(或其補(bǔ)角)是異面直線BC與AD所成的角.在三角形ADE中,DE=2,AE=,AD=2,,所以∠ADE=.因此,異面直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新生兒尿布疹的護(hù)理指南
- 某公司培訓(xùn)需求分析報告
- 松江線下培訓(xùn)演講
- 2024-2025學(xué)年江西省“三新”協(xié)同教研共同體高一下學(xué)期5月月考?xì)v史試題(解析版)
- 2026年網(wǎng)絡(luò)安全項目管理質(zhì)量保證測試題
- 2026年旅游地理與文化背景分析題庫
- 2026年高中語文詩詞與古文應(yīng)用題目
- 2026年高級會計師職稱考試題集及答案速查
- 2026年地理知識要點考試題目及答案參考
- 2026年網(wǎng)絡(luò)編程算法與應(yīng)用軟件設(shè)計挑戰(zhàn)題試題集
- 鐵路勞動安全 課件 第四章 機(jī)務(wù)勞動安全
- 2024年中國靛藍(lán)染料市場調(diào)查研究報告
- 智慧人社大數(shù)據(jù)綜合分析平臺整體解決方案智慧社保大數(shù)據(jù)綜合分析平臺整體解決方案
- 脊柱與四肢檢查課件
- 六宮格數(shù)獨100題
- 2024年河北省供銷合作總社招聘筆試參考題庫附帶答案詳解
- 宅基地及地上房屋確權(quán)登記申請審批表
- 醫(yī)療衛(wèi)生輿情課件
- 2024年甘肅省安全員A證考試題庫及答案
- 數(shù)據(jù)安全保護(hù)與隱私保護(hù)
- 初中英語北師大版單詞表 按單元順序 七年級至九年級全冊
評論
0/150
提交評論