上海市普通高中2025屆高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第1頁
上海市普通高中2025屆高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第2頁
上海市普通高中2025屆高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第3頁
上海市普通高中2025屆高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第4頁
上海市普通高中2025屆高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

上海市普通高中2025屆高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)的圖像如圖所示,則和分別是()A. B. C. D.2.函數(shù)的最小正周期為,則的圖象的一條對稱軸方程是()A. B. C. D.3.已知直線與,若,則()A.2 B.1 C.2或-1 D.-2或14.下面的程序運(yùn)行后,輸出的值是()A.90 B.29 C.13 D.545.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)A.向左平行移動(dòng)個(gè)單位長度B.向右平行移動(dòng)個(gè)單位長度C.向左平行移動(dòng)個(gè)單位長度D.向右平行移動(dòng)個(gè)單位長度6.設(shè),則“數(shù)列為等比數(shù)列”是“數(shù)列滿足”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件7.若正方體的棱長為,點(diǎn),在上運(yùn)動(dòng),,四面體的體積為,則()A. B. C. D.8.式子的值為()A. B.0 C.1 D.9.已知向量,且,則().A. B.C. D.10.若直線上存在點(diǎn)滿足則實(shí)數(shù)的最大值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知變量和線性相關(guān),其一組觀測數(shù)據(jù)為,由最小二乘法求得回歸直線方程為.若已知,則______.12.已知三棱錐外接球的表面積為,面,則該三棱錐體積的最大值為____。13.已知三棱柱的側(cè)棱與底面邊長都相等,在底面內(nèi)的射影為的中心,則與底面所成角的正弦值等于.14.已知函數(shù)的定義域?yàn)?,則實(shí)數(shù)的取值范圍為_____.15.在ΔABC中,a比c長4,b比c長2,且最大角的余弦值是-12,則16.若數(shù)列滿足,且,則___________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.正四面體是側(cè)棱與底面邊長都相等的正三棱錐,它的對棱互相垂直.有一個(gè)如圖所示的正四面體,E,F(xiàn),G分別是棱AB,BC,CD的中點(diǎn).(1)求證:面EFG;(2)求異面直線EG與AC所成角的大小.18.△ABC的內(nèi)角A,B,C所對邊分別為,已知△ABC面積為.(1)求角C;(2)若D為AB中點(diǎn),且c=2,求CD的最大值.19.已知函數(shù)(1)求函數(shù)的定義域:(2)求函數(shù)的單調(diào)遞減區(qū)間:(3)求函數(shù)了在區(qū)間上的最大值和最小值.20.已知數(shù)列的前項(xiàng)和為,滿足,,數(shù)列滿足,,且.(1)求數(shù)列的通項(xiàng)公式;(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項(xiàng)公式;(3)若,數(shù)列的前項(xiàng)和為,對任意的,都有,求實(shí)數(shù)的取值范圍.21.已知,其中,,.(1)求的單調(diào)遞增區(qū)間;(2)在中,角,,所對的邊分別為,,,,,且向量與共線,求邊長和的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

通過識(shí)別圖像,先求,再求周期,將代入求即可【詳解】由圖可知:,,將代入得,又,,故故選C【點(diǎn)睛】本題考查通過三角函數(shù)識(shí)圖求解解析式,屬于基礎(chǔ)題2、B【解析】

根據(jù)最小正周期為求解與解析式,再求解的對稱軸判斷即可.【詳解】因?yàn)樽钚≌芷跒?故.故,對稱軸方程為,解得.當(dāng)時(shí),.故選:B【點(diǎn)睛】本題主要考查了三角函數(shù)最小正周期的應(yīng)用以及對稱軸的計(jì)算.屬于基礎(chǔ)題.3、C【解析】

由兩直線平行的等價(jià)條件,即可得到本題答案.【詳解】因?yàn)椋?,解得?故選:C【點(diǎn)睛】本題主要考查利用兩直線平行的等價(jià)條件求值.4、D【解析】

根據(jù)程序語言的作用,模擬程序的運(yùn)行結(jié)果,即可得到答案.【詳解】模擬程序的運(yùn)行,可得,執(zhí)行循環(huán)體,,執(zhí)行循環(huán)體,,執(zhí)行循環(huán)體,,執(zhí)行循環(huán)體,,退出循環(huán),輸出的值為1.故選:D.【點(diǎn)睛】本題考查利用模擬程序執(zhí)行過程求輸出結(jié)果,考查邏輯推理能力和運(yùn)算求解能力,屬于基礎(chǔ)題.5、D【解析】試題分析:由題意,為得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)向右平行移動(dòng)個(gè)單位長度,故選D.【考點(diǎn)】三角函數(shù)圖象的平移【名師點(diǎn)睛】本題考查三角函數(shù)圖象的平移,在函數(shù)的圖象平移變換中要注意“”的影響,變換有兩種順序:一種的圖象向左平移個(gè)單位得的圖象,再把橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得的圖象,另一種是把的圖象橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得的圖象,再向左平移個(gè)單位得的圖象.6、A【解析】

“數(shù)列為等比數(shù)列”,則,數(shù)列滿足.反之不能推出,可以舉出反例.【詳解】解:“數(shù)列為等比數(shù)列”,則,數(shù)列滿足.充分性成立;反之不能推出,例如,數(shù)列滿足,但數(shù)列不是等比數(shù)列,即必要性不成立;故“數(shù)列為等比數(shù)列”是“數(shù)列滿足”的充分非必要條件故選:.【點(diǎn)睛】本題考查了等比數(shù)列的定義、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.7、C【解析】

由題意得,到平面的距離不變=,且,即可得三棱錐的體積,利用等體積法得.【詳解】正方體的棱長為,點(diǎn),在上運(yùn)動(dòng),,如圖所示:點(diǎn)到平面的距離=,且,所以.所以三棱錐的體積=.利用等體積法得.故選:C.【點(diǎn)睛】本題考查了正方體的性質(zhì),等體積法求三棱錐的體積,屬于基礎(chǔ)題.8、D【解析】

利用兩角和的正弦公式可得原式為cos(),再由特殊角的三角函數(shù)值可得結(jié)果.【詳解】cos()=coscos,故選D.【點(diǎn)睛】本題考查兩角和的余弦公式,熟練掌握兩角和與差的余弦公式以及特殊角的三角函數(shù)值是解題的關(guān)鍵,屬于基礎(chǔ)題.9、D【解析】

運(yùn)用平面向量的加法的幾何意義,結(jié)合等式,把其中的向量都轉(zhuǎn)化為以為起點(diǎn)的向量的形式,即可求出的表示.【詳解】,,故本題選D.【點(diǎn)睛】本題考查了平面向量加法的幾何意義,屬于基礎(chǔ)題.10、B【解析】

首先畫出可行域,然后結(jié)合交點(diǎn)坐標(biāo)平移直線即可確定實(shí)數(shù)m的最大值.【詳解】不等式組表示的平面區(qū)域如下圖所示,由,得:,即C點(diǎn)坐標(biāo)為(-1,-2),平移直線x=m,移到C點(diǎn)或C點(diǎn)的左邊時(shí),直線上存在點(diǎn)在平面區(qū)域內(nèi),所以,m≤-1,即實(shí)數(shù)的最大值為-1.【點(diǎn)睛】本題主要考查線性規(guī)劃及其應(yīng)用,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、355【解析】

根據(jù)回歸直線必過樣本點(diǎn)的中心,根據(jù)橫坐標(biāo)結(jié)合回歸方程求出縱坐標(biāo)即可得解.【詳解】由題:,回歸直線方程為,所以,.故答案為:355【點(diǎn)睛】此題考查根據(jù)回歸直線方程求樣本點(diǎn)的中心的縱坐標(biāo),關(guān)鍵在于掌握回歸直線必過樣本點(diǎn)的中心,根據(jù)平均數(shù)求解.12、【解析】

根據(jù)球的表面積計(jì)算出球的半徑.利用勾股定理計(jì)算出三角形外接圓的半徑,根據(jù)正弦定理求得的長,再根據(jù)圓內(nèi)三角形面積的最大值求得三角形面積的最大值,由此求得三棱錐體積的最大值.【詳解】畫出圖像如下圖所示,其中是外接球的球心,是底面三角形的外心,.設(shè)球的半徑為,三角形外接圓的半徑為,則,故在中,.在三角形中,由正弦定理得.故三角形為等邊三角形,其高為.由于為定值,而三角形的高等于時(shí),三角形的面積取得最大值,由于為定值,故三棱錐的體積最大值為.【點(diǎn)睛】本小題主要考查外接球有關(guān)計(jì)算,考查三棱錐體積的最大值的計(jì)算,屬于中檔題.13、【解析】試題分析:由題意得,不妨設(shè)棱長為,如圖,在底面內(nèi)的射影為的中心,故,由勾股定理得,過作平面,則為與底面所成角,且,作于中點(diǎn),所以,所以,所以與底面所成角的正弦值為.考點(diǎn):直線與平面所成的角.14、【解析】

根據(jù)對數(shù)的真數(shù)對于0,再結(jié)合不等式即可解決.【詳解】函數(shù)的定義域?yàn)榈葍r(jià)于對于任意的實(shí)數(shù),恒成立當(dāng)時(shí)成立當(dāng)時(shí),等價(jià)于綜上可得【點(diǎn)睛】本題主要考查了函數(shù)的定義域以及不等式恒成立的問題,函數(shù)的定義域常考的由1、,2、,3、.屬于基礎(chǔ)題.15、15【解析】

由a比c長4,b比c長2,用c表示出a與b,可得出a為最大邊,即A為最大角,可得出cosA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值求出A的度數(shù),同時(shí)利用余弦定理表示出cosA,將表示出的a與b代入,并根據(jù)最大角的余弦值,得到關(guān)于c的方程,求出方程的解得到c的值,然后由b,c及sinA的值,利用三角形的面積公式即可求出三角形ABC的面積.【詳解】根據(jù)題意得:a=c+4,b=c+2,則a為最長邊,∴A為最大角,又cosA=-12,且∴A=120cos整理得:c2-c-6=0,即(c?3)(解得:c=3或c=?2(舍去),∴a=3+4=7,b=3+2=5,則△ABC的面積S=12bcsinA=15故答案為:153【點(diǎn)睛】余弦定理一定要熟記兩種形式:(1)a2=b2+16、【解析】

對已知等式左右取倒數(shù)可整理得到,進(jìn)而得到為等差數(shù)列;利用等差數(shù)列通項(xiàng)公式可求得,進(jìn)而得到的通項(xiàng)公式,從而求得結(jié)果.【詳解】,即數(shù)列是以為首項(xiàng),為公差的等差數(shù)列故答案為:【點(diǎn)睛】本題考查利用遞推公式求解數(shù)列通項(xiàng)公式的問題,關(guān)鍵是明確對于形式的遞推關(guān)系式,采用倒數(shù)法來進(jìn)行推導(dǎo).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】

(1)連接EF,F(xiàn)G,GE,通過三角形的中位線可得,進(jìn)而可得面EFG;(2)由題可得為異面直線EG與AC所成角,根據(jù)正四棱錐的特點(diǎn)得到為等腰直角三角形,進(jìn)而可得結(jié)果.【詳解】解:(1)連接EF,F(xiàn)G,GE,如圖,E,F(xiàn)分別是棱AB,BC的中點(diǎn),,又面EFG,面EFG,面EFG;(2)由(1),則為異面直線EG與AC所成角,AC與BD是正四面體的對棱,,又,,又,為等腰直角三角形,,即異面直線EG與AC所成角的大小為.【點(diǎn)睛】本題考查線面平行的證明,以及異面直線所成的角,通過直線平行找到異面直線所成角的平面角是關(guān)鍵,本題難度不大.18、(1)(2)【解析】

(1)根據(jù),由正弦定理化角為邊,得,再根據(jù)余弦定理即可求出角C;(2)由余弦定理可得,又,結(jié)合基本不等式可求得.由中點(diǎn)公式的向量式得,再利用數(shù)量積的運(yùn)算,即可求出的最大值.【詳解】(1)依題意得,,由正弦定理得,,即,由余弦定理得,,又因?yàn)?,所?(2)∵,,∴,即.∵為中點(diǎn),所以,∴當(dāng)且僅當(dāng)時(shí),等號(hào)成立.所以的最大值為.【點(diǎn)睛】本題主要考查利用正、余弦定理解三角形,以及利用中點(diǎn)公式的向量式結(jié)合基本不等式解決中線的最值問題,意在考查學(xué)生的邏輯推理和數(shù)學(xué)運(yùn)算能力,屬于中檔題.19、(1).(2),.(3),.【解析】

(1)根據(jù)分母不等于求出函數(shù)的定義域.(2)化簡函數(shù)的表達(dá)式,利用正弦函數(shù)的單調(diào)減區(qū)間求解函數(shù)的單調(diào)減區(qū)間即可.(3)通過滿足求出相位的范圍,利用正弦函數(shù)的值域,求解函數(shù)的最大值和最小值.【詳解】解:(1)函數(shù)的定義域?yàn)椋?即,(2),令且,解得:,即所以的單調(diào)遞減區(qū)間:,.(3)由,可得:,當(dāng),即:時(shí),當(dāng),即:時(shí),【點(diǎn)睛】本題考查三角函數(shù)的最值以及三角函數(shù)的化簡與應(yīng)用,兩角和與差的三角函數(shù)的應(yīng)用考查計(jì)算能力.20、(1);(2)證明見解析,;(3)或.【解析】

(1)運(yùn)用數(shù)列的遞推式以及數(shù)列的和與通項(xiàng)的關(guān)系可得,再由等比數(shù)列的定義、通項(xiàng)公式可得結(jié)果;(2)對等式兩邊除以,結(jié)合等差數(shù)列的定義和通項(xiàng)公式,可得所求;(3)求得,由數(shù)列的錯(cuò)位相減法求和,可得,化簡,即,對任意的成立,運(yùn)用數(shù)列的單調(diào)性可得最大值,解不等式可得所求范圍.【詳解】(1),可得,即;時(shí),,又,相減可得,即,則;(2)證明:,可得,可得是首項(xiàng)和公差均為1的等差數(shù)列,可得,即;(3),前n項(xiàng)和為,,相減可得,可得,,即為,即,對任意的成立,由,可得為遞減數(shù)列,即n=1時(shí)取得最大值1?2=?1,可得,即或.【點(diǎn)睛】“錯(cuò)位相減法”求數(shù)列的和是重點(diǎn)也是難點(diǎn),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論