云南省保山隆陽區(qū)一中2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第1頁
云南省保山隆陽區(qū)一中2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第2頁
云南省保山隆陽區(qū)一中2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第3頁
云南省保山隆陽區(qū)一中2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第4頁
云南省保山隆陽區(qū)一中2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省保山隆陽區(qū)一中2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且若對(duì)任意的,恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.2.在△ABC中,若asinA+bsinB<csinC,則△ABC是()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.都有可能3.在平行四邊形中,為一條對(duì)角線,,,則=()A.(2,4) B.(3,5) C.(1,1) D.(-1,-1)4.已知各個(gè)頂點(diǎn)都在同一球面上的正方體的棱長為2,則這個(gè)球的表面積為()A. B. C. D.5.設(shè)是等比數(shù)列,有下列四個(gè)命題:①是等比數(shù)列;②是等比數(shù)列;③是等比數(shù)列;④是等差數(shù)列.其中正確命題的個(gè)數(shù)是()A. B. C. D.6.?dāng)S一枚均勻的硬幣,如果連續(xù)拋擲2020次,那么拋擲第2019次時(shí)出現(xiàn)正面向上的概率是()A. B. C. D.7.若,且,則的值是()A. B. C. D.8.已知函數(shù),若存在滿足,且,則n的最小值為()A.3 B.4 C.5 D.69.同時(shí)拋擲三枚硬幣,則拋擲一次時(shí)出現(xiàn)兩枚正面一枚反面的概率為()A. B. C. D.10.若實(shí)數(shù)滿足,則的最小值為()A.4 B.8 C.16 D.32二、填空題:本大題共6小題,每小題5分,共30分。11.已知的圓心角所對(duì)的弧長等于,則該圓的半徑為______.12.已知圓上有兩個(gè)點(diǎn)到直線的距離為3,則半徑的取值范圍是________13.某次體檢,6位同學(xué)的身高(單位:米)分別為1.72,1.78,1.75,1.80,1.69,1.77則這組數(shù)據(jù)的中位數(shù)是_________(米).14.若滿足約束條件,的最小值為,則________.15.計(jì)算:______.16.直線與直線的交點(diǎn)為,則________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四邊形ABCD中,,,已知,.(1)求的值;(2)若,且,求BC的長.18.已知數(shù)列的前項(xiàng)和為,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.19.已知為數(shù)列的前項(xiàng)和,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.20.已知函數(shù).(1)求函數(shù)的單調(diào)減區(qū)間.(2)求函數(shù)的最大值并求取得最大值時(shí)的的取值集合.(3)若,求的值.21.已知函數(shù),其中.(1)若函數(shù)在區(qū)間內(nèi)有一個(gè)零點(diǎn),求的取值范圍;(2)若函數(shù)在區(qū)間上的最大值與最小值之差為2,且,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

由得到an=n,任意的,恒成立等價(jià)于,利用作差法求出的最小值即可.【詳解】當(dāng)n=1時(shí),,又∴∵an+12=2Sn+n+1,∴當(dāng)n≥2時(shí),an2=2Sn﹣1+n,兩式相減可得:an+12﹣an2=2an+1,∴an+12=(an+1)2,∵數(shù)列{an}是各項(xiàng)均為正數(shù)的數(shù)列,∴an+1=an+1,即an+1﹣an=1,顯然n=1時(shí),適合上式∴數(shù)列{an}是等差數(shù)列,首項(xiàng)為1,公差為1.∴an=1+(n﹣1)=n.任意的,恒成立,即恒成立記,,∴為單調(diào)增數(shù)列,即的最小值為∴,即故選C【點(diǎn)睛】已知求的一般步驟:(1)當(dāng)時(shí),由求的值;(2)當(dāng)時(shí),由,求得的表達(dá)式;(3)檢驗(yàn)的值是否滿足(2)中的表達(dá)式,若不滿足則分段表示;(4)寫出的完整表達(dá)式.2、A【解析】

由正弦定理化已知條件為邊的關(guān)系,然后由余弦定理可判斷角的大?。驹斀狻俊遖sinA+bsinB<csinC,∴,∴,∴為鈍角.故選A.【點(diǎn)睛】本題考查正弦定理與余弦定理,考查三角形形狀的判斷,屬于基礎(chǔ)題.3、C【解析】試題分析:,故選C.考點(diǎn):平面向量的線性運(yùn)算.4、A【解析】

先求出外接球的半徑,再求球的表面積得解.【詳解】由題得正方體的對(duì)角線長為,所以.故選A【點(diǎn)睛】本題主要考查多面體的外接球問題和球的表面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.5、C【解析】

設(shè),得到,,,再利用舉反例的方式排除③【詳解】設(shè),則:,故是首項(xiàng)為,公比為的等比數(shù)列,①正確,故是首項(xiàng)為,公比為的等比數(shù)列,②正確取,則,不是等比數(shù)列,③錯(cuò)誤.,故是首項(xiàng)為,公差為的等差數(shù)列,④正確故選:C【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列的判斷,找出反例可以快速的排除選項(xiàng),簡(jiǎn)化運(yùn)算,是解題的關(guān)鍵.6、B【解析】

根據(jù)概率的性質(zhì)直接得到答案.【詳解】根據(jù)概率的性質(zhì)知:每次正面向上的概率為.故選:.【點(diǎn)睛】本題考查了概率的性質(zhì),屬于簡(jiǎn)單題.7、A【解析】

對(duì)兩邊平方,可得,進(jìn)而可得,再根據(jù),可知,由此即可求出結(jié)果.【詳解】因?yàn)?,所以,所以,所以,又,所以所?故選:A.【點(diǎn)睛】本題主要考查了同角的基本關(guān)系,屬于基礎(chǔ)題.8、D【解析】

根據(jù)正弦函數(shù)的性質(zhì),對(duì)任意(i,j=1,2,3,…,n),都有,因此要使得滿足條件的n最小,則盡量讓更多的取值對(duì)應(yīng)的點(diǎn)是最值點(diǎn),然后再對(duì)應(yīng)圖象取值.【詳解】,因?yàn)檎液瘮?shù)對(duì)任意(i,j=1,2,3,…,n),都有,要使n取得最小值,盡可能多讓(i=1,2,3,…,n)取得最高點(diǎn),因?yàn)椋砸沟脻M足條件的n最小,如圖所示則需取,,,,,,即取,,,,,,即.故選:D【點(diǎn)睛】本題主要考查正弦函數(shù)的圖象,還考查了數(shù)形結(jié)合的思想方法,屬于中檔題.9、B【解析】

根據(jù)二項(xiàng)分布的概率公式求解.【詳解】每枚硬幣正面向上的概率都等于,故恰好有兩枚正面向上的概率為:.故選B.【點(diǎn)睛】本題考查二項(xiàng)分布.本題也可根據(jù)古典概型概率計(jì)算公式求解.10、B【解析】

由可以得到,利用基本不等式可求最小值.【詳解】因?yàn)?,故,因?yàn)?,故,故,?dāng)且僅當(dāng)時(shí)等號(hào)成立,故的最小值為8,故選B.【點(diǎn)睛】應(yīng)用基本不等式求最值時(shí),需遵循“一正二定三相等”,如果原代數(shù)式中沒有積為定值或和為定值,則需要對(duì)給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結(jié)構(gòu).求最值時(shí)要關(guān)注取等條件的驗(yàn)證.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先將角度化為弧度,再根據(jù)弧長公式求解.【詳解】解:圓心角,弧長為,,即該圓的半徑長.故答案為:.【點(diǎn)睛】本題考查了角度和弧度的互化以及弧長公式的應(yīng)用問題,屬于基礎(chǔ)題.12、【解析】

由圓上有兩個(gè)點(diǎn)到直線的距離為3,先求出圓心到直線的距離,得到不等關(guān)系式,即可求解.【詳解】由題意,圓的圓心坐標(biāo)為,半徑為,則圓心到直線的距離為,又因?yàn)閳A上有兩個(gè)點(diǎn)到直線的距離為3,則,解得,即圓的半徑的取值范圍是.【點(diǎn)睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,其中解答中合理應(yīng)用圓心到直線的距離,結(jié)合圖象得到半徑的不等關(guān)系式是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與運(yùn)算能力,屬于中檔試題.13、1.76【解析】

將這6位同學(xué)的身高按照從低到高排列為:1.69,1.72,1.75,1.77,1.78,1.80,這六個(gè)數(shù)的中位數(shù)是1.75與1.77的平均數(shù),顯然為1.76.【考點(diǎn)】中位數(shù)的概念【點(diǎn)睛】本題主要考查中位數(shù)的概念,是一道基礎(chǔ)題目.從歷年高考題目看,涉及統(tǒng)計(jì)的題目,往往不難,主要考查考生的視圖、用圖能力,以及應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力.14、4【解析】

由約束條件得到可行域,取最小值時(shí)在軸截距最小,通過直線平移可知過時(shí),取最小值;求出點(diǎn)坐標(biāo),代入構(gòu)造出方程求得結(jié)果.【詳解】由約束條件可得可行域如下圖陰影部分所示:取最小值時(shí),即在軸截距最小平移直線可知,當(dāng)過點(diǎn)時(shí),在軸截距最小由得:,解得:本題正確結(jié)果:【點(diǎn)睛】本題考查現(xiàn)行規(guī)劃中根據(jù)最值求解參數(shù)的問題,關(guān)鍵是能夠明確最值取得的點(diǎn),屬于??碱}型.15、【解析】

在分式的分子和分母中同時(shí)除以,然后利用常見的數(shù)列極限可計(jì)算出所求極限值.【詳解】.故答案為:.【點(diǎn)睛】本題考查數(shù)列極限的計(jì)算,熟悉一些常見數(shù)列極限是解題的關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】

(2,2)為直線和直線的交點(diǎn),即點(diǎn)(2,2)在兩條直線上,分別代入直線方程,即可求出a,b的值,進(jìn)而得a+b的值?!驹斀狻恳?yàn)橹本€與直線的交點(diǎn)為,所以,,即,,故.【點(diǎn)睛】本題考查求直線方程中的參數(shù),屬于基礎(chǔ)題。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)由正弦定理可得;(2)由(1)求得,然后利用余弦定理求解.【詳解】(1)在中,由正弦定理,得,因?yàn)?,,,所以;?)由(1)可知,,因?yàn)椋?,在中,由余弦定理,得,因?yàn)?,,所以,即,解得或,又,則.【點(diǎn)睛】本題考查正弦定理和余弦定理解三角形,掌握正弦定理和余弦定理是解題關(guān)鍵.18、(1);(2).【解析】

(1)由遞推公式,再遞推一步,得,兩式相減化簡(jiǎn)得,可以判斷數(shù)列是等差數(shù)列,進(jìn)而可以求出等差數(shù)列的通項(xiàng)公式;(2)根據(jù)(1)和對(duì)數(shù)的運(yùn)算性質(zhì),用裂項(xiàng)相消法可以求出數(shù)列的前項(xiàng)和.【詳解】解:(1)由知所以,即,從而所以,數(shù)列是以2為公比的等比數(shù)列又可得,綜上所述,故.(2)由(1)可知,故,綜上所述,所以,故而所以.【點(diǎn)睛】本題考查了已知遞推公式求數(shù)列通項(xiàng)公式問題,考查了等差數(shù)列的判斷以及等差數(shù)列的通項(xiàng)公式,考查了用裂項(xiàng)相消法求數(shù)列前項(xiàng)和問題,考查了數(shù)學(xué)運(yùn)算能力.19、(1)(2)當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),【解析】

(1)利用,時(shí)單獨(dú)討論.求解.

(2)對(duì)時(shí)單獨(dú)討論,當(dāng)時(shí),對(duì)從到的和應(yīng)用錯(cuò)位相減法求和.【詳解】當(dāng)時(shí),,得.當(dāng)時(shí),即.所以數(shù)列是以3為首項(xiàng),3為公比的等比數(shù)列.所以(2)設(shè),則..當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),設(shè)………………由﹣得所以所以綜上所述:當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),【點(diǎn)睛】本題考查應(yīng)用求通項(xiàng)公式和應(yīng)用錯(cuò)位相減法求前項(xiàng)和,考查計(jì)算能力,屬于難題.20、(1).(2)最大值是2,取得最大值時(shí)的的取值集合是.(3)【解析】

(1)利用三角恒等變換化簡(jiǎn)的解析式,再利用正弦函數(shù)的單調(diào)性,求得函數(shù)的單調(diào)區(qū)間;(2)根據(jù)的解析式以及正弦函數(shù)的最值,求得函數(shù)的最大值,以及取得最大值時(shí)的的取值集合;(3)根據(jù)題設(shè)條件求得,再利用二倍角的余弦公式求的值.【詳解】(1),令,解得,所以的單調(diào)遞減區(qū)間為;(2)由(1)知,故的最大值為2,此時(shí),,解得,所以的最大值是2,取得最大值時(shí)的的取值集合是;(3),即,所以,所以.【點(diǎn)睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論