版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
宜興市洑東中學(xué)2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,AB∥CD,∠1=45°,∠3=80°,則∠2的度數(shù)為()A.30° B.35° C.40° D.45°2.﹣18的倒數(shù)是()A.18 B.﹣18 C.- D.3.在△ABC中,點(diǎn)D、E分別在邊AB、AC上,如果AD=1,BD=3,那么由下列條件能夠判斷DE∥BC的是()A. B. C. D.4.某種微生物半徑約為0.00000637米,該數(shù)字用科學(xué)記數(shù)法可表示為()A.0.637×10﹣5B.6.37×10﹣6C.63.7×10﹣7D.6.37×10﹣75.甲車行駛30千米與乙車行駛40千米所用時(shí)間相同,已知乙車每小時(shí)比甲車多行駛15千米,設(shè)甲車的速度為千米/小時(shí),依據(jù)題意列方程正確的是()A. B. C. D.6.如圖,已知,,則的度數(shù)為()A. B. C. D.7.工人師傅用一張半徑為24cm,圓心角為150°的扇形鐵皮做成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的高為()cm.A. B. C. D.8.根據(jù)如圖所示的程序計(jì)算函數(shù)y的值,若輸入的x值是4或7時(shí),輸出的y值相等,則b等于()A.9 B.7 C.﹣9 D.﹣79.隨著“三農(nóng)”問題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計(jì)圖.依據(jù)統(tǒng)計(jì)圖得出的以下四個(gè)結(jié)論正確的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入為2.8萬D.前年年收入不止①②③三種農(nóng)作物的收入10.上體育課時(shí),小明5次投擲實(shí)心球的成績?nèi)缦卤硭荆瑒t這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()12345成績(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.0二、填空題(共7小題,每小題3分,滿分21分)11.因式分解:2x12.如圖,將三角形AOC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得三角形BOD,已知OA=4,OC=1,那么圖中陰影部分的面積為_____.(結(jié)果保留π)13.如圖,在矩形ABCD中,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊后得到△AFE,且點(diǎn)F在矩形ABCD內(nèi)部.將AF延長交邊BC于點(diǎn)G.若,則(用含k的代數(shù)式表示).14.若關(guān)于x的方程=0有增根,則m的值是______.15.如圖,利用標(biāo)桿測量建筑物的高度,已知標(biāo)桿高1.2,測得,則建筑物的高是__________.16.如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半徑為1,點(diǎn)P是斜邊AB上的點(diǎn),過點(diǎn)P作⊙C的一條切線PQ(點(diǎn)Q是切點(diǎn)),則線段PQ的最小值為_____.17.如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長線相交于點(diǎn)E,AB、DC的延長線相交于點(diǎn)F.若∠E+∠F=80°,則∠A=____°.三、解答題(共7小題,滿分69分)18.(10分)已知拋物線的開口向上頂點(diǎn)為P(1)若P點(diǎn)坐標(biāo)為(4,一1),求拋物線的解析式;(2)若此拋物線經(jīng)過(4,一1),當(dāng)-1≤x≤2時(shí),求y的取值范圍(用含a的代數(shù)式表示)(3)若a=1,且當(dāng)0≤x≤1時(shí),拋物線上的點(diǎn)到x軸距離的最大值為6,求b的值19.(5分)某學(xué)校為了解學(xué)生的課余活動(dòng)情況,抽樣調(diào)查了部分學(xué)生,將所得數(shù)據(jù)處理后,制成折線統(tǒng)計(jì)圖(部分)和扇形統(tǒng)計(jì)圖(部分)如圖:(1)在這次研究中,一共調(diào)查了學(xué)生,并請補(bǔ)全折線統(tǒng)計(jì)圖;(2)該校共有2200名學(xué)生,估計(jì)該校愛好閱讀和愛好體育的學(xué)生一共有多少人?20.(8分)先化簡,再求值:,其中m是方程的根.21.(10分)某農(nóng)場用2臺(tái)大收割機(jī)和5臺(tái)小收割機(jī)同時(shí)工作2小時(shí)共收割小麥3.6公頃,3臺(tái)大收割機(jī)和2臺(tái)小收割機(jī)同時(shí)工作5小時(shí)共收割小麥8公頃.1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥多少公頃?22.(10分)如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點(diǎn)E,F(xiàn)同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng),已知點(diǎn)F的移動(dòng)速度是點(diǎn)E移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設(shè)E點(diǎn)移動(dòng)距離為x(0<x<6).(1)∠DCB=度,當(dāng)點(diǎn)G在四邊形ABCD的邊上時(shí),x=;(2)在點(diǎn)E,F(xiàn)的移動(dòng)過程中,點(diǎn)G始終在BD或BD的延長線上運(yùn)動(dòng),求點(diǎn)G在線段BD的中點(diǎn)時(shí)x的值;(3)當(dāng)2<x<6時(shí),求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關(guān)系式,當(dāng)x取何值時(shí),y有最大值?并求出y的最大值.23.(12分)如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點(diǎn)O,AC平分∠BAD,過點(diǎn)C作CE⊥AB交AB的延長線于點(diǎn)E,連接OE.求證:四邊形ABCD是菱形;若AB=,BD=2,求OE的長.24.(14分)如圖,在?ABCD中,AB=4,AD=5,tanA=,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB﹣BC以每秒1個(gè)單位長度的速度向中點(diǎn)C運(yùn)動(dòng),過點(diǎn)P作PQ⊥AB,交折線AD﹣DC于點(diǎn)Q,將線段PQ繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到線段PR,連接QR.設(shè)△PQR與?ABCD重疊部分圖形的面積為S(平方單位),點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒).(1)當(dāng)點(diǎn)R與點(diǎn)B重合時(shí),求t的值;(2)當(dāng)點(diǎn)P在BC邊上運(yùn)動(dòng)時(shí),求線段PQ的長(用含有t的代數(shù)式表示);(3)當(dāng)點(diǎn)R落在?ABCD的外部時(shí),求S與t的函數(shù)關(guān)系式;(4)直接寫出點(diǎn)P運(yùn)動(dòng)過程中,△PCD是等腰三角形時(shí)所有的t值.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】分析:根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)解答即可.詳解:如圖,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故選B.點(diǎn)睛:此題考查平行線的性質(zhì),關(guān)鍵是根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)解答.2、C【解析】
根據(jù)乘積為1的兩個(gè)數(shù)互為倒數(shù),可得一個(gè)數(shù)的倒數(shù).【詳解】∵-18=1,∴﹣18的倒數(shù)是,故選C.【點(diǎn)睛】本題考查了倒數(shù),分子分母交換位置是求一個(gè)數(shù)的倒數(shù)的關(guān)鍵.3、D【解析】
如圖,∵AD=1,BD=3,∴,當(dāng)時(shí),,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根據(jù)選項(xiàng)A、B、C的條件都不能推出DE∥BC,故選D.4、B【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】0.00000637的小數(shù)點(diǎn)向右移動(dòng)6位得到6.37所以0.00000637用科學(xué)記數(shù)法表示為6.37×10﹣6,故選B.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.5、C【解析】由實(shí)際問題抽象出方程(行程問題).【分析】∵甲車的速度為千米/小時(shí),則乙甲車的速度為千米/小時(shí)∴甲車行駛30千米的時(shí)間為,乙車行駛40千米的時(shí)間為,∴根據(jù)甲車行駛30千米與乙車行駛40千米所用時(shí)間相同得.故選C.6、B【解析】分析:根據(jù)∠AOC和∠BOC的度數(shù)得出∠AOB的度數(shù),從而得出答案.詳解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故選B.點(diǎn)睛:本題主要考查的是角度的計(jì)算問題,屬于基礎(chǔ)題型.理解各角之間的關(guān)系是解題的關(guān)鍵.7、B【解析】分析:直接利用圓錐的性質(zhì)求出圓錐的半徑,進(jìn)而利用勾股定理得出圓錐的高.詳解:由題意可得圓錐的母線長為:24cm,設(shè)圓錐底面圓的半徑為:r,則2πr=,解得:r=10,故這個(gè)圓錐的高為:(cm).故選B.點(diǎn)睛:此題主要考查了圓錐的計(jì)算,正確得出圓錐的半徑是解題關(guān)鍵.8、C【解析】
先求出x=7時(shí)y的值,再將x=4、y=-1代入y=2x+b可得答案.【詳解】∵當(dāng)x=7時(shí),y=6-7=-1,∴當(dāng)x=4時(shí),y=2×4+b=-1,解得:b=-9,故選C.【點(diǎn)睛】本題主要考查函數(shù)值,解題的關(guān)鍵是掌握函數(shù)值的計(jì)算方法.9、C【解析】
A、前年①的收入為60000×=19500,去年①的收入為80000×=26000,此選項(xiàng)錯(cuò)誤;B、前年③的收入所占比例為×100%=30%,去年③的收入所占比例為×100%=32.5%,此選項(xiàng)錯(cuò)誤;C、去年②的收入為80000×=28000=2.8(萬元),此選項(xiàng)正確;D、前年年收入即為①②③三種農(nóng)作物的收入,此選項(xiàng)錯(cuò)誤,故選C.【點(diǎn)睛】本題主要考查扇形統(tǒng)計(jì)圖,解題的關(guān)鍵是掌握扇形統(tǒng)計(jì)圖是用整個(gè)圓表示總數(shù)用圓內(nèi)各個(gè)扇形的大小表示各部分?jǐn)?shù)量占總數(shù)的百分?jǐn)?shù),并且通過扇形統(tǒng)計(jì)圖可以很清楚地表示出各部分?jǐn)?shù)量同總數(shù)之間的關(guān)系.10、D【解析】
解:按從小到大的順序排列小明5次投球的成績:7.5,7.8,8.2,8.1,8.1.其中8.1出現(xiàn)1次,出現(xiàn)次數(shù)最多,8.2排在第三,∴這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是:8.1,8.2.故選D.【點(diǎn)睛】本題考查眾數(shù);中位數(shù).二、填空題(共7小題,每小題3分,滿分21分)11、2(x+3)(x﹣3).【解析】試題分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考點(diǎn):因式分解.12、5π【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積,利用扇形的面積公式計(jì)算即可求解.【詳解】∵△AOC≌△BOD,∴陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積5π.故答案為:5π.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)以及扇形的面積公式,正確理解:陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積是解題的關(guān)鍵.13、。【解析】試題分析:如圖,連接EG,∵,∴設(shè),則?!唿c(diǎn)E是邊CD的中點(diǎn),∴。∵△ADE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴。∴?!嘣赗t△ABG中,由勾股定理得:,即。∴?!啵ㄖ蝗≌担!?。14、2【解析】去分母得,m-1-x=0.∵方程有增根,∴x=1,∴m-1-1=0,∴m=2.15、10.5【解析】
先證△AEB∽△ABC,再利用相似的性質(zhì)即可求出答案.【詳解】解:由題可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案為10.5.【點(diǎn)睛】本題考查了相似的判定和性質(zhì).利用相似的性質(zhì)列出含所求邊的比例式是解題的關(guān)鍵.16、.【解析】
當(dāng)PC⊥AB時(shí),線段PQ最短;連接CP、CQ,根據(jù)勾股定理知PQ2=CP2﹣CQ2,先求出CP的長,然后由勾股定理即可求得答案.【詳解】連接CP、CQ;如圖所示:∵PQ是⊙C的切線,∴CQ⊥PQ,∠CQP=90°,根據(jù)勾股定理得:PQ2=CP2﹣CQ2,∴當(dāng)PC⊥AB時(shí),線段PQ最短.∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是.故答案為:.【點(diǎn)睛】本題考查了切線的性質(zhì)以及勾股定理的運(yùn)用;注意掌握輔助線的作法,注意當(dāng)PC⊥AB時(shí),線段PQ最短是關(guān)鍵.17、50【解析】試題分析:連結(jié)EF,如圖,根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠A+∠BCD=180°,根據(jù)對頂角相等得∠BCD=∠ECF,則∠A+∠ECF=180°,根據(jù)三角形內(nèi)角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形內(nèi)角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,則∠A+80°+∠A=180°,然后解方程即可.試題解析:連結(jié)EF,如圖,∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考點(diǎn):圓內(nèi)接四邊形的性質(zhì).三、解答題(共7小題,滿分69分)18、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解析】
(1)將P(4,-1)代入,可求出解析式
(2)將(4,-1)代入求得:b=-4a-1,再代入對稱軸直線中,可判斷,且開口向上,所以y隨x的增大而減小,再把x=-1,x=2代入即可求得.
(3)觀察圖象可得,當(dāng)0≤x≤1時(shí),拋物線上的點(diǎn)到x軸距離的最大值為6,這些點(diǎn)可能為x=0,x=1,三種情況,再根據(jù)對稱軸在不同位置進(jìn)行討論即可.【詳解】解:(1)由此拋物線頂點(diǎn)為P(4,-1),所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=,b=-8a=-2所以拋物線解析式為:;(2)由此拋物線經(jīng)過點(diǎn)C(4,-1),所以一1=16a+4b+3,即b=-4a-1.因?yàn)閽佄锞€的開口向上,則有其對稱軸為直線,而所以當(dāng)-1≤x≤2時(shí),y隨著x的增大而減小當(dāng)x=-1時(shí),y=a+(4a+1)+3=4+5a當(dāng)x=2時(shí),y=4a-2(4a+1)+3=1-4a所以當(dāng)-1≤x≤2時(shí),1-4a≤y≤4+5a;(3)當(dāng)a=1時(shí),拋物線的解析式為y=x2+bx+3∴拋物線的對稱軸為直線由拋物線圖象可知,僅當(dāng)x=0,x=1或x=-時(shí),拋物線上的點(diǎn)可能離x軸最遠(yuǎn)分別代入可得,當(dāng)x=0時(shí),y=3當(dāng)x=1時(shí),y=b+4當(dāng)x=-時(shí),y=-+3①當(dāng)一<0,即b>0時(shí),3≤y≤b+4,由b+4=6解得b=2②當(dāng)0≤-≤1時(shí),即一2≤b≤0時(shí),△=b2-12<0,拋物線與x軸無公共點(diǎn)由b+4=6解得b=2(舍去);③當(dāng),即b<-2時(shí),b+4≤y≤3,由b+4=-6解得b=-10綜上,b=2或-10【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)解析式,以及最值問題,關(guān)鍵是對稱軸在不同的范圍內(nèi),拋物線上的點(diǎn)到x軸距離的最大值的點(diǎn)不同.19、(1)200名;折線圖見解析;(2)1210人.【解析】
(1)由“其他”的人數(shù)和所占百分?jǐn)?shù),求出全部調(diào)查人數(shù);先由“體育”所占百分?jǐn)?shù)和全部調(diào)查人數(shù)求出體育的人數(shù),進(jìn)一步求出閱讀的人數(shù),補(bǔ)全折線統(tǒng)計(jì)圖;(2)利用樣本估計(jì)總體的方法計(jì)算即可解答.【詳解】(1)調(diào)查學(xué)生總?cè)藬?shù)為40÷20%=200(人),體育人數(shù)為:200×30%=60(人),閱讀人數(shù)為:200﹣(60+30+20+40)=200﹣150=50(人).補(bǔ)全折線統(tǒng)計(jì)圖如下:.(2)2200×=1210(人).答:估計(jì)該校學(xué)生中愛好閱讀和愛好體育的人數(shù)大約是1210人.【點(diǎn)睛】本題考查了統(tǒng)計(jì)知識(shí)的應(yīng)用,試題以圖表為載體,要求學(xué)生能從中提取信息來解題,與實(shí)際生活息息相關(guān),符合新課標(biāo)的理念.20、原式=.∵m是方程的根.∴,即,∴原式=.【解析】試題分析:先通分計(jì)算括號(hào)里的,再計(jì)算括號(hào)外的,化為最簡,由于m是方程的根,那么,可得的值,再把的值整體代入化簡后的式子,計(jì)算即可.試題解析:原式=.∵m是方程的根.∴,即,∴原式=.考點(diǎn):分式的化簡求值;一元二次方程的解.21、1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥0.4hm2和0.2hm2.【解析】
此題可設(shè)1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥x公頃和y公頃,根據(jù)題中的等量關(guān)系列出二元一次方程組解答即可【詳解】設(shè)1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥x公頃和y公頃根據(jù)題意可得解得答:每臺(tái)大小收割機(jī)每小時(shí)分別收割0.4公頃和0.2公頃.【點(diǎn)睛】此題主要考查了二元一次方程組的實(shí)際應(yīng)用,解題關(guān)鍵在于弄清題意,找到合適的等量關(guān)系22、(1)30;2;(2)x=1;(3)當(dāng)x=時(shí),y最大=;【解析】
(1)如圖1中,作DH⊥BC于H,則四邊形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,當(dāng)?shù)冗吶切巍鱁GF的高=時(shí),點(diǎn)G在AD上,此時(shí)x=2;(2)根據(jù)勾股定理求出的長度,根據(jù)三角函數(shù),求出∠ADB=30°,根據(jù)中點(diǎn)的定義得出根據(jù)等邊三角形的性質(zhì)得到,即可求出x的值;
(3)圖2,圖3三種情形解決問題.①當(dāng)2<x<3時(shí),如圖2中,點(diǎn)E、F在線段BC上,△EFG與四邊形ABCD重疊部分為四邊形EFNM;②當(dāng)3≤x<6時(shí),如圖3中,點(diǎn)E在線段BC上,點(diǎn)F在射線BC上,重疊部分是△ECP;【詳解】(1)作DH⊥BC于H,則四邊形ABHD是矩形.∵AD=BH=3,BC=6,∴CH=BC﹣BH=3,在Rt△DHC中,CH=3,∴當(dāng)?shù)冗吶切巍鱁GF的高等于時(shí),點(diǎn)G在AD上,此時(shí)x=2,∠DCB=30°,故答案為30,2,(2)如圖∵AD∥BC∴∠A=180°﹣∠ABC=180°﹣90°=90°在Rt△ABD中,∴∠ADB=30°∵G是BD的中點(diǎn)∴∵AD∥BC∴∠ADB=∠DBC=30°∵△GEF是等邊三角形,∴∠GFE=60°∴∠BGF=90°在Rt△BGF中,∴2x=2即x=1;(3)分兩種情況:當(dāng)2<x<3,如圖2點(diǎn)E、點(diǎn)F在線段BC上△GEF與四邊形ABCD重疊部分為四邊形EFNM∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°∴∠FNC=∠DCB∴FN=FC=6﹣2x∴GN=x﹣(6﹣2x)=3x﹣6∵∠FNC=∠GNM=30°,∠G=60°∴∠GMN=90°在Rt△GNM中,∴∴當(dāng)時(shí),最大當(dāng)3≤x<6時(shí),如圖3,點(diǎn)E在線段BC上,點(diǎn)F在線段BC的延長線上,△GEF與四邊形ABCD重疊部分為△ECP∵∠PCE=30°,∠PEC=60°∴∠EPC=90°在Rt△EPC中EC=6﹣x,對稱軸為當(dāng)x<6時(shí),y隨x的增大而減小∴當(dāng)x=3時(shí),最大綜上所述:當(dāng)時(shí),最大【點(diǎn)睛】屬于四邊形的綜合題,考查動(dòng)點(diǎn)問題,等邊三角形的性質(zhì),三角函數(shù),二次函數(shù)的最值等,綜合性比較強(qiáng),難度較大.23、(1)見解析;(1)OE=1.【解析】
(1)先判斷出∠OAB=∠DCA,進(jìn)而判斷出∠DAC=∠DAC,得出CD=AD=AB,即可得出結(jié)論;
(1)先判斷出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出結(jié)論.【詳解】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC為∠DAB的平分線,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四邊形ABCD是平行四邊形,∵AD=AB,∴?ABCD是菱形;(1)∵四邊形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=1,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年心靈指導(dǎo)服務(wù)合同
- 2026年職業(yè)公益活動(dòng)企劃合同
- 2026年危險(xiǎn)廢物污染易發(fā)區(qū)保護(hù)保險(xiǎn)合同中
- 等級保護(hù)測評合同
- 2025年農(nóng)業(yè)科技創(chuàng)新與合作項(xiàng)目可行性研究報(bào)告
- 2025年風(fēng)能發(fā)電與儲(chǔ)能結(jié)合項(xiàng)目可行性研究報(bào)告
- 2025年智能音樂教育APP開發(fā)項(xiàng)目可行性研究報(bào)告
- 生豬搬運(yùn)合同范本
- 海外代理協(xié)議合同
- 紅酒展會(huì)合同范本
- 電力安全風(fēng)險(xiǎn)管理
- 甘肅扶貧貸款管理辦法
- 原發(fā)性小腸腫瘤多學(xué)科綜合治療中國專家共識(shí)解讀課件
- 甲狀腺膿腫課件
- 醫(yī)學(xué)類大學(xué)生職業(yè)規(guī)劃
- 2026版高中漢水丑生生物-第六章第1節(jié):細(xì)胞增殖 (第1課時(shí))
- 同型半胱氨酸的檢測及臨床應(yīng)用
- 【MOOC答案】《電子線路設(shè)計(jì)、測試與實(shí)驗(yàn)(二)》(華中科技大學(xué))章節(jié)作業(yè)慕課答案
- 2025年高考數(shù)學(xué)立體幾何檢測卷(立體幾何中的三角函數(shù)應(yīng)用)
- 2025年綜合類-衛(wèi)生系統(tǒng)招聘考試-護(hù)士招聘考試歷年真題摘選帶答案(5卷100題)
- 駐外銷售人員管理辦法
評論
0/150
提交評論