浙江省臺(tái)州市2024年中考猜題數(shù)學(xué)試卷含解析_第1頁
浙江省臺(tái)州市2024年中考猜題數(shù)學(xué)試卷含解析_第2頁
浙江省臺(tái)州市2024年中考猜題數(shù)學(xué)試卷含解析_第3頁
浙江省臺(tái)州市2024年中考猜題數(shù)學(xué)試卷含解析_第4頁
浙江省臺(tái)州市2024年中考猜題數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

浙江省臺(tái)州市2024年中考猜題數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.二次函數(shù)y=x2+bx–1的圖象如圖,對(duì)稱軸為直線x=1,若關(guān)于x的一元二次方程x2–2x–1–t=0(t為實(shí)數(shù))在–1<x<4的范圍內(nèi)有實(shí)數(shù)解,則t的取值范圍是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<72.如圖是二次函數(shù)y=ax2+bx+c的圖象,其對(duì)稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點(diǎn),則y1<yA.①② B.②③ C.②④ D.①③④3.二次函數(shù)y=﹣(x+2)2﹣1的圖象的對(duì)稱軸是()A.直線x=1 B.直線x=﹣1 C.直線x=2 D.直線x=﹣24.七年級(jí)1班甲、乙兩個(gè)小組的14名同學(xué)身高(單位:厘米)如下:甲組158159160160160161169乙組158159160161161163165以下敘述錯(cuò)誤的是()A.甲組同學(xué)身高的眾數(shù)是160B.乙組同學(xué)身高的中位數(shù)是161C.甲組同學(xué)身高的平均數(shù)是161D.兩組相比,乙組同學(xué)身高的方差大5.如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.36.如圖,△ABC的面積為8cm2,AP垂直∠B的平分線BP于P,則△PBC的面積為(

)A.2cm2

B.3cm2

C.4cm2

D.5cm27.已知反比例函數(shù)y=-2A.圖象必經(jīng)過點(diǎn)(﹣1,2) B.y隨x的增大而增大C.圖象在第二、四象限內(nèi) D.若x>1,則0>y>-28.已知一個(gè)多邊形的內(nèi)角和是外角和的2倍,則此多邊形的邊數(shù)為()A.6 B.7 C.8 D.99.如圖是一個(gè)由4個(gè)相同的長方體組成的立體圖形,它的主視圖是()A.B.C.D.10.若,則()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.為有效開展“陽光體育”活動(dòng),某校計(jì)劃購買籃球和足球共50個(gè),購買資金不超過3000元.若每個(gè)籃球80元,每個(gè)足球50元,則籃球最多可購買_____個(gè).12.如圖,矩形ABCD中,BC=6,CD=3,以AD為直徑的半圓O與BC相切于點(diǎn)E,連接BD則陰影部分的面積為____(結(jié)果保留π)13.已知關(guān)于x的不等式組只有四個(gè)整數(shù)解,則實(shí)數(shù)a的取值范是______.14.已知一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是3,則另一組新數(shù)據(jù)x1+1,x2+2,x3+3,x4+4,x5+5的平均數(shù)是_____.15.Rt△ABC的邊AB=5,AC=4,BC=3,矩形DEFG的四個(gè)頂點(diǎn)都在Rt△ABC的邊上,當(dāng)矩形DEFG的面積最大時(shí),其對(duì)角線的長為_______.16.小華到商場購買賀卡,他身上帶的錢恰好能買5張3D立體賀卡或20張普通賀卡若小華先買了3張3D立體賀卡,則剩下的錢恰好還能買______張普通賀卡.三、解答題(共8題,共72分)17.(8分)如圖,拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線y=m與拋物線交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB圍成的圖形稱為該拋物線對(duì)應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M稱為碟頂.由定義知,取AB中點(diǎn)N,連結(jié)MN,MN與AB的關(guān)系是_____.拋物線y=對(duì)應(yīng)的準(zhǔn)蝶形必經(jīng)過B(m,m),則m=_____,對(duì)應(yīng)的碟寬AB是_____.拋物線y=ax2﹣4a﹣(a>0)對(duì)應(yīng)的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對(duì)稱軸上是否有這樣的點(diǎn)P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.18.(8分)某高校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)就餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖.(1)這次被調(diào)查的同學(xué)共有名;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)計(jì)算在扇形統(tǒng)計(jì)圖中剩大量飯菜所對(duì)應(yīng)扇形圓心角的度數(shù);(4)校學(xué)生會(huì)通過數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供200人用一餐.據(jù)此估算,該校20000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐?19.(8分)如圖,在△ABC中,AB=AC,點(diǎn)P、D分別是BC、AC邊上的點(diǎn),且∠APD=∠B,求證:AC?CD=CP?BP;若AB=10,BC=12,當(dāng)PD∥AB時(shí),求BP的長.20.(8分)計(jì)算:﹣22﹣+|1﹣4sin60°|21.(8分)如圖,在?ABCD中,以點(diǎn)4為圓心,AB長為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于12(1)根據(jù)以上尺規(guī)作圖的過程,求證:四邊形ABEF是菱形;(2)若AB=2,AE=23,求∠BAD的大?。?2.(10分)“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點(diǎn)”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個(gè)最想去的景點(diǎn),下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計(jì)圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調(diào)查的學(xué)生總?cè)藬?shù);(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);(3)若該校共有800名學(xué)生,請估計(jì)“最想去景點(diǎn)B“的學(xué)生人數(shù).23.(12分)已知△ABC內(nèi)接于⊙O,AD平分∠BAC.(1)如圖1,求證:;(2)如圖2,當(dāng)BC為直徑時(shí),作BE⊥AD于點(diǎn)E,CF⊥AD于點(diǎn)F,求證:DE=AF;(3)如圖3,在(2)的條件下,延長BE交⊙O于點(diǎn)G,連接OE,若EF=2EG,AC=2,求OE的長.24.2018年4月份,鄭州市教育局針對(duì)鄭州市中小學(xué)參與課外輔導(dǎo)進(jìn)行調(diào)查,根據(jù)學(xué)生參與課外輔導(dǎo)科目的數(shù)量,分成了:1科、2科、3科和4科,以下簡記為:1、2、3、4,并根據(jù)調(diào)查結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(未完成),請結(jié)合圖中所給信息解答下列問題:(1)本次被調(diào)查的學(xué)員共有人;在被調(diào)查者中參加“3科”課外輔導(dǎo)的有人.(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)已知鄭州市中小學(xué)約有24萬人,那么請你估計(jì)一下參與輔導(dǎo)科目不多于2科的學(xué)生大約有多少人.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

利用對(duì)稱性方程求出b得到拋物線解析式為y=x2﹣2x﹣1,則頂點(diǎn)坐標(biāo)為(1,﹣2),再計(jì)算當(dāng)﹣1<x<4時(shí)對(duì)應(yīng)的函數(shù)值的范圍為﹣2≤y<7,由于關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實(shí)數(shù))在﹣1<x<4的范圍內(nèi)有實(shí)數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點(diǎn),然后利用函數(shù)圖象可得到t的范圍.【詳解】拋物線的對(duì)稱軸為直線x=﹣=1,解得b=﹣2,∴拋物線解析式為y=x2﹣2x﹣1,則頂點(diǎn)坐標(biāo)為(1,﹣2),當(dāng)x=﹣1時(shí),y=x2﹣2x﹣1=2;當(dāng)x=4時(shí),y=x2﹣2x﹣1=7,當(dāng)﹣1<x<4時(shí),﹣2≤y<7,而關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實(shí)數(shù))在﹣1<x<4的范圍內(nèi)有實(shí)數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點(diǎn),∴﹣2≤t<7,故選B.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì)、拋物線與x軸的交點(diǎn)、二次函數(shù)與一元二次方程,把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程是解題的關(guān)鍵.2、C【解析】試題分析:根據(jù)題意可得:a<0,b>0,c>0,則abc<0,則①錯(cuò)誤;根據(jù)對(duì)稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據(jù)函數(shù)的軸對(duì)稱可得:當(dāng)x=2時(shí),y>0,即4a+2b+c>0,則③錯(cuò)誤;對(duì)于開口向下的函數(shù),離對(duì)稱軸越近則函數(shù)值越大,則點(diǎn)睛:本題主要考查的就是二次函數(shù)的性質(zhì),屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對(duì)稱軸在y軸左邊,則b的符號(hào)與a相同,如果對(duì)稱軸在y軸右邊,則b的符號(hào)與a相反;如果題目中出現(xiàn)2a+b和2a-b的時(shí)候,我們要看對(duì)稱軸與1或者-1的大小關(guān)系再進(jìn)行判定;如果出現(xiàn)a+b+c,則看x=1時(shí)y的值;如果出現(xiàn)a-b+c,則看x=-1時(shí)y的值;如果出現(xiàn)4a+2b+c,則看x=2時(shí)y的值,以此類推;對(duì)于開口向上的函數(shù),離對(duì)稱軸越遠(yuǎn)則函數(shù)值越大,對(duì)于開口向下的函數(shù),離對(duì)稱軸越近則函數(shù)值越大.3、D【解析】

根據(jù)二次函數(shù)頂點(diǎn)式的性質(zhì)解答即可.【詳解】∵y=﹣(x+2)2﹣1是頂點(diǎn)式,∴對(duì)稱軸是:x=-2,故選D.【點(diǎn)睛】本題考查二次函數(shù)頂點(diǎn)式y(tǒng)=a(x-h)2+k的性質(zhì),對(duì)稱軸為x=h,頂點(diǎn)坐標(biāo)為(h,k)熟練掌握頂點(diǎn)式的性質(zhì)是解題關(guān)鍵.4、D【解析】

根據(jù)眾數(shù)、中位數(shù)和平均數(shù)及方差的定義逐一判斷可得.【詳解】A.甲組同學(xué)身高的眾數(shù)是160,此選項(xiàng)正確;B.乙組同學(xué)身高的中位數(shù)是161,此選項(xiàng)正確;C.甲組同學(xué)身高的平均數(shù)是161,此選項(xiàng)正確;D.甲組的方差為,乙組的方差為,甲組的方差大,此選項(xiàng)錯(cuò)誤.故選D.【點(diǎn)睛】本題考查了眾數(shù)、中位數(shù)和平均數(shù)及方差,掌握眾數(shù)、中位數(shù)和平均數(shù)及方差的定義和計(jì)算公式是解題的關(guān)鍵.5、C【解析】

由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長.【詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.【點(diǎn)睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關(guān)鍵.6、C【解析】

延長AP交BC于E,根據(jù)AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可求得△PBC的面積.【詳解】延長AP交BC于E.∵AP垂直∠B的平分線BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵∠APB=∠EPBBP=BP∠ABP=∠EBP,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=12S△ABC故選C.【點(diǎn)睛】本題考查了三角形面積和全等三角形的性質(zhì)和判定的應(yīng)用,關(guān)鍵是求出S△PBC=S△PBE+S△PCE=12S△7、B【解析】試題分析:根據(jù)反比例函數(shù)y=kx試題解析:A、(-1,2)滿足函數(shù)的解析式,則圖象必經(jīng)過點(diǎn)(-1,2);B、在每個(gè)象限內(nèi)y隨x的增大而增大,在自變量取值范圍內(nèi)不成立,則命題錯(cuò)誤;C、命題正確;D、命題正確.故選B.考點(diǎn):反比例函數(shù)的性質(zhì)8、A【解析】試題分析:根據(jù)多邊形的外角和是310°,即可求得多邊形的內(nèi)角的度數(shù)為720°,依據(jù)多邊形的內(nèi)角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故選A.考點(diǎn):多邊形的內(nèi)角和定理以及多邊形的外角和定理9、A【解析】由三視圖的定義可知,A是該幾何體的三視圖,B、C、D不是該幾何體的三視圖.故選A.點(diǎn)睛:從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實(shí)線,看不到的線畫虛線.本題從左面看有兩列,左側(cè)一列有兩層,右側(cè)一列有一層.10、D【解析】

等式左邊為非負(fù)數(shù),說明右邊,由此可得b的取值范圍.【詳解】解:,

,解得故選D.【點(diǎn)睛】本題考查了二次根式的性質(zhì):,.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】

設(shè)購買籃球x個(gè),則購買足球個(gè),根據(jù)總價(jià)單價(jià)購買數(shù)量結(jié)合購買資金不超過3000元,即可得出關(guān)于x的一元一次不等式,解之取其中的最大整數(shù)即可.【詳解】設(shè)購買籃球x個(gè),則購買足球個(gè),根據(jù)題意得:,解得:.為整數(shù),最大值為1.故答案為1.【點(diǎn)睛】本題考查了一元一次不等式的應(yīng)用,根據(jù)各數(shù)量間的關(guān)系,正確列出一元一次不等式是解題的關(guān)鍵.12、π.【解析】

如圖,連接OE,利用切線的性質(zhì)得OD=3,OE⊥BC,易得四邊形OECD為正方形,先利用扇形面積公式,利用S正方形OECD-S扇形EOD計(jì)算由弧DE、線段EC、CD所圍成的面積,然后利用三角形的面積減去剛才計(jì)算的面積即可得到陰影部分的面積.【詳解】連接OE,如圖,∵以AD為直徑的半圓O與BC相切于點(diǎn)E,∴OD=CD=3,OE⊥BC,∴四邊形OECD為正方形,∴由弧DE、線段EC、CD所圍成的面積=S正方形OECD﹣S扇形EOD=32﹣,∴陰影部分的面積,故答案為π.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了矩形的性質(zhì)和扇形的面積公式.13、-3<a≤-2【解析】分析:求出不等式組中兩不等式的解集,根據(jù)不等式取解集的方法:同大取大;同小取小;大大小小無解;大小小大取中間的法則表示出不等式組的解集,由不等式組只有四個(gè)整數(shù)解,根據(jù)解集取出四個(gè)整數(shù)解,即可得出a的范圍.詳解:由不等式①解得:由不等式②移項(xiàng)合并得:?2x>?4,解得:x<2,∴原不等式組的解集為由不等式組只有四個(gè)整數(shù)解,即為1,0,?1,?2,可得出實(shí)數(shù)a的范圍為故答案為點(diǎn)睛:考查一元一次不等式組的整數(shù)解,求不等式的解集,根據(jù)不等式組有4個(gè)整數(shù)解覺得實(shí)數(shù)的取值范圍.14、1【解析】

根據(jù)平均數(shù)的性質(zhì)知,要求x1+1,x2+2,x3+3,x4+4、x5+5的平均數(shù),只要把數(shù)x1、x2、x3、x4、x5的和表示出即可.【詳解】∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是3,∴x1+x2+x3+x4+x5=15,則新數(shù)據(jù)的平均數(shù)為=1,故答案為:1.【點(diǎn)睛】本題考查的是樣本平均數(shù)的求法.解決本題的關(guān)鍵是用一組數(shù)據(jù)的平均數(shù)表示另一組數(shù)據(jù)的平均數(shù).15、或【解析】

分兩種情形畫出圖形分別求解即可解決問題【詳解】情況1:如圖1中,四邊形DEFG是△ABC的內(nèi)接矩形,設(shè)DE=CF=x,則BF=3-x∵EF∥AC,∴=∴=∴EF=(3-x)∴S矩形DEFG=x?(3-x)=﹣(x-)2+3∴x=時(shí),矩形的面積最大,最大值為3,此時(shí)對(duì)角線=.情況2:如圖2中,四邊形DEFG是△ABC的內(nèi)接矩形,設(shè)DE=GF=x,作CH⊥AB于H,交DG于T.則CH=,CT=﹣x,∵DG∥AB,∴△CDG∽△CAB,∴∴∴DG=5﹣x,∴S矩形DEFG=x(5﹣x)=﹣(x﹣)2+3,∴x=時(shí),矩形的面積最大為3,此時(shí)對(duì)角線==∴矩形面積的最大值為3,此時(shí)對(duì)角線的長為或故答案為或【點(diǎn)睛】本題考查相似三角形的應(yīng)用、矩形的性質(zhì)、二次函數(shù)的最值等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問題16、1【解析】

根據(jù)已知他身上帶的錢恰好能買5張3D立體賀卡或20張普通賀卡得:1張3D立體賀卡的單價(jià)是1張普通賀卡單價(jià)的4倍,所以設(shè)1張3D立體賀卡x元,剩下的錢恰好還能買y張普通賀卡,根據(jù)3張3D立體賀卡張普通賀卡張3D立體賀卡,可得結(jié)論.【詳解】解:設(shè)1張3D立體賀卡x元,剩下的錢恰好還能買y張普通賀卡.

則1張普通賀卡為:元,

由題意得:,

答:剩下的錢恰好還能買1張普通賀卡.

故答案為:1.【點(diǎn)睛】本題考查了一元一次方程的應(yīng)用以及列代數(shù)式,解題的關(guān)鍵是:根據(jù)總價(jià)單價(jià)數(shù)量列式計(jì)算.三、解答題(共8題,共72分)17、(1)MN與AB的關(guān)系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此拋物線的對(duì)稱軸上有這樣的點(diǎn)P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【解析】

(1)直接利用等腰直角三角形的性質(zhì)分析得出答案;(2)利用已知點(diǎn)為B(m,m),代入拋物線解析式進(jìn)而得出m的值,即可得出AB的值;(2)①根據(jù)題意得出拋物線必過(2,0),進(jìn)而代入求出答案;②根據(jù)y=x2﹣2的對(duì)稱軸上P(0,2),P(0,﹣2)時(shí),∠APB為直角,進(jìn)而得出答案.【詳解】(1)MN與AB的關(guān)系是:MN⊥AB,MN=AB,如圖1,∵△AMB是等腰直角三角形,且N為AB的中點(diǎn),∴MN⊥AB,MN=AB,故答案為MN⊥AB,MN=AB;(2)∵拋物線y=對(duì)應(yīng)的準(zhǔn)蝶形必經(jīng)過B(m,m),∴m=m2,解得:m=2或m=0(不合題意舍去),當(dāng)m=2則,2=x2,解得:x=±2,則AB=2+2=4;故答案為2,4;(2)①由已知,拋物線對(duì)稱軸為:y軸,∵拋物線y=ax2﹣4a﹣(a>0)對(duì)應(yīng)的碟寬在x軸上,且AB=1.∴拋物線必過(2,0),代入y=ax2﹣4a﹣(a>0),得,9a﹣4a﹣=0,解得:a=,∴拋物線的解析式是:y=x2﹣2;②由①知,如圖2,y=x2﹣2的對(duì)稱軸上P(0,2),P(0,﹣2)時(shí),∠APB為直角,∴在此拋物線的對(duì)稱軸上有這樣的點(diǎn)P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【點(diǎn)睛】此題主要考查了二次函數(shù)綜合以及等腰直角三角形的性質(zhì),正確應(yīng)用等腰直角三角形的性質(zhì)是解題關(guān)鍵.18、(1)1000(2)200(3)54°(4)4000人【解析】試題分析:(1)根據(jù)沒有剩飯的人數(shù)是400人,所占的百分比是40%,據(jù)此即可求得調(diào)查的總?cè)藬?shù);(2)利用(1)中求得結(jié)果減去其它組的人數(shù)即可求得剩少量飯的人數(shù),從而補(bǔ)全直方圖;(3)利用360°乘以對(duì)應(yīng)的比例即可求解;(4)利用20000除以調(diào)查的總?cè)藬?shù),然后乘以200即可求解.試題解析:(1)被調(diào)查的同學(xué)的人數(shù)是400÷40%=1000(名);(2)剩少量的人數(shù)是1000-400-250-150=200(名),;(3)在扇形統(tǒng)計(jì)圖中剩大量飯菜所對(duì)應(yīng)扇形圓心角的度數(shù)是:360°×1501000(4)200001000答:校20000名學(xué)生一餐浪費(fèi)的食物可供4000人食用一餐.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?9、(1)證明見解析;(2).【解析】(2)易證∠APD=∠B=∠C,從而可證到△ABP∽△PCD,即可得到,即AB?CD=CP?BP,由AB=AC即可得到AC?CD=CP?BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,從而可證到△BAP∽△BCA,然后運(yùn)用相似三角形的性質(zhì)即可求出BP的長.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∴AB?CD=CP?BP.∵AB=AC,∴AC?CD=CP?BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴.∵AB=10,BC=12,∴,∴BP=.“點(diǎn)睛”本題主要考查了相似三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、平行線的性質(zhì)、三角形外角的性質(zhì)等知識(shí),把證明AC?CD=CP?BP轉(zhuǎn)化為證明AB?CD=CP?BP是解決第(1)小題的關(guān)鍵,證到∠BAP=∠C進(jìn)而得到△BAP∽△BCA是解決第(2)小題的關(guān)鍵.20、-1【解析】

直接利用二次根式的性質(zhì)以及特殊角的三角函數(shù)值、絕對(duì)值的性質(zhì)分別化簡得出答案.【詳解】解:原式===﹣1.【點(diǎn)睛】此題主要考查了實(shí)數(shù)運(yùn)算以及特殊角的三角函數(shù)值,正確化簡各數(shù)是解題關(guān)鍵.21、(1)見解析;(2)60°.【解析】

(1)先證明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可證明;(2)連結(jié)BF,交AE于G.根據(jù)菱形的性質(zhì)得出AB=2,AG=12AE=3【詳解】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四邊形ABEF是平行四邊形,∵AB=BE,∴四邊形ABEF是菱形;(2)連結(jié)BF,交AE于G.∵AB=AF=2,∴GA=AE=×2=,在Rt△AGB中,cos∠BAE==,∴∠BAG=30°,∴∠BAF=2∠BAG=60°,【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)與菱形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握平行四邊形的性質(zhì)與菱形的判定與性質(zhì).22、(1)40;(2)72;(3)1.【解析】

(1)用最想去A景點(diǎn)的人數(shù)除以它所占的百分比即可得到被調(diào)查的學(xué)生總?cè)藬?shù);(2)先計(jì)算出最想去D景點(diǎn)的人數(shù),再補(bǔ)全條形統(tǒng)計(jì)圖,然后用360°乘以最想去D景點(diǎn)的人數(shù)所占的百分比即可得到扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去A景點(diǎn)的人數(shù)所占的百分比即可.【詳解】(1)被調(diào)查的學(xué)生總?cè)藬?shù)為8÷20%=40(人);(2)最想去D景點(diǎn)的人數(shù)為40﹣8﹣14﹣4﹣6=8(人),補(bǔ)全條形統(tǒng)計(jì)圖為:扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù)為×360°=72°;(3)800×=1,所以估計(jì)“最想去景點(diǎn)B“的學(xué)生人數(shù)為1人.23、(1)證明見解析;(1)證明見解析;(3)1.【解析】

(1)連接OB、OC、OD,根據(jù)圓心角與圓周角的性質(zhì)得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根據(jù)圓周角相等所對(duì)的弧相等得出結(jié)論.(1)過點(diǎn)O作OM⊥AD于點(diǎn)M,又一組角相等,再根據(jù)平行線的性質(zhì)得出對(duì)應(yīng)邊成比例,進(jìn)而得出結(jié)論;(3)延長EO交AB于點(diǎn)H,連接CG,連接OA,BC為⊙O直徑,則∠G=∠CFE=∠FEG=90°,四邊形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根據(jù)鄰補(bǔ)角與余角的性質(zhì)可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根據(jù)直角三角形的三角函數(shù)計(jì)算出邊的長,根據(jù)“角角邊”證明出△HBO∽△ABC,根據(jù)相似三角形的性質(zhì)得出對(duì)應(yīng)邊成比例,進(jìn)而得出結(jié)論.【詳解】(1)如圖1,連接OB、OC、OD,∵∠BAD和∠BOD是所對(duì)的圓周角和圓心角,∠CAD和∠COD是所對(duì)的圓周角和圓心角,∴∠BOD=1∠BAD,∠COD=1∠CAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴=;(1)如圖1,過點(diǎn)O作OM⊥AD于點(diǎn)M,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論