版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.正十邊形的外角和為()A.180° B.360° C.720° D.1440°2.如圖,正方形ABCD中,AD=6,E為AB的中點,將△ADE沿DE翻折得到△FDE,延長EF交BC于G,F(xiàn)H⊥BC,垂足為H,延長DF交BC與點M,連接BF、DG.以下結論:①∠BFD+∠ADE=180°;②△BFM為等腰三角形;③△FHB∽△EAD;④BE=2FM⑤S△BFG=2.6⑥sin∠EGB=;其中正確的個數(shù)是()A.3 B.4 C.5 D.63.為了美化校園環(huán)境,加大校園綠化投資.某區(qū)前年用于綠化的投資為18萬元,今年用于綠化的投資為33萬元,設這兩年用于綠化投資的年平均增長率為x,則()A.18(1+2x)=33 B.18(1+x2)=33C.18(1+x)2=33 D.18(1+x)+18(1+x)2=334.如圖,AD是△ABC的中線,點E在AD上,AD=4DE,連接BE并延長交AC于點F,則AF:FC的值是()A.3:2 B.4:3 C.2:1 D.2:35.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:66.下列方程是一元二次方程的是()A.2x2-5x+3 B.2x2-y+1=0 C.x2=0 D.+x=27.下列方程中,是關于x的一元二次方程是()A. B.x2+2x=x2﹣1C.a(chǎn)x2+bx+c=0 D.3(x+1)2=2(x+1)8.把二次函數(shù)配方后得()A. B.C. D.9.如圖,矩形ABCD的頂點D在反比例函數(shù)(x<0)的圖象上,頂點B,C在x軸上,對角線AC的延長線交y軸于點E,連接BE,若△BCE的面積是6,則k的值為()A.﹣6 B.﹣8 C.﹣9 D.﹣1210.已知反比例函數(shù)的圖象經(jīng)過點,小良說了四句話,其中正確的是()A.當時, B.函數(shù)的圖象只在第一象限C.隨的增大而增大 D.點不在此函數(shù)的圖象上二、填空題(每小題3分,共24分)11.已知,是方程的兩實數(shù)根,則__.12.若一個圓錐的側面展開圖是一個半徑為3cm,圓心角為120°的扇形,則該圓錐的底面半徑為__________cm.13.如圖,是的內(nèi)接三角形,,的長是,則的半徑是__________.14.若函數(shù)y=(m+1)x2﹣x+m(m+1)的圖象經(jīng)過原點,則m的值為_____.15.如圖,正方形的對角線上有一點,且,點在的延長線上,連接,過點作,交的延長線于點,若,,則線段的長是________.16.如圖,身高為1.7m的小明AB站在小河的一岸,利用樹的倒影去測量河對岸一棵樹CD的高度,CD在水中的倒影為C′D,A、E、C′在一條線上.如果小河BD的寬度為12m,BE=3m,那么這棵樹CD的高為_____m.17.已知:∠BAC.(1)如圖,在平面內(nèi)任取一點O;(2)以點O為圓心,OA為半徑作圓,交射線AB于點D,交射線AC于點E;(3)連接DE,過點O作線段DE的垂線交⊙O于點P;(4)連接AP,DP和PE.根據(jù)以上作圖過程及所作圖形,下列四個結論中:①△ADE是⊙O的內(nèi)接三角形;②;③DE=2PE;④AP平分∠BAC.所有正確結論的序號是______________.18.計算:×=______.三、解答題(共66分)19.(10分)如圖,中,點在邊上,,將線段繞點旋轉到的位置,使得,連接,與交于點(1)求證:;(2)若,,求的度數(shù).20.(6分)解一元二次方程:.21.(6分)用一段長為30m的籬笆圍成一個邊靠墻的矩形菜園,墻長為18m(1)若圍成的面積為72m2,球矩形的長與寬;(2)菜園的面積能否為120m2,為什么?22.(8分)如圖,在平面直角坐標系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點的左側,拋物線的對稱軸x=1,與y軸交于C(0,﹣3)點,點P是直線BC下方的拋物線上一動點.(1)求這個二次函數(shù)的解析式及A、B點的坐標.(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形;若存在,請求出此時點P的坐標;若不存在,請說明理由.(3)當點P運動到什么位置時,四邊形ABPC的面積最大;求出此時P點的坐標和四邊形ABPC的最大面積.23.(8分)在矩形中,,,點是邊上一點,交于點,點在射線上,且是和的比例中項.(1)如圖1,求證:;(2)如圖2,當點在線段之間,聯(lián)結,且與互相垂直,求的長;(3)聯(lián)結,如果與以點、、為頂點所組成的三角形相似,求的長.24.(8分)城市規(guī)劃期間,欲拆除一電線桿AB,已知距電線桿AB水平距離14m的D處有一大壩,背水坡CD的坡度i=2:1,壩高CF為2m,在壩頂C處測得桿頂A的仰角為30°,D、E之間是寬為2m的人行道.試問:在拆除電線桿AB時,為確保行人安全,是否需要將此人行道封上?請說明理由(在地面上,以點B為圓心,以AB長為半徑的圓形區(qū)域為危險區(qū)域.)(≈1.732,≈1.414)25.(10分)如圖,已知△ABC,∠B=90゜,AB=3,BC=6,動點P、Q同時從點B出發(fā),動點P沿BA以1個單位長度/秒的速度向點A移動,動點Q沿BC以2個單位長度/秒的速度向點C移動,運動時間為t秒.連接PQ,將△QBP繞點Q順時針旋轉90°得到△,設△與△ABC重合部分面積是S.(1)求證:PQ∥AC;(2)求S與t的函數(shù)關系式,并直接寫出自變量t的取值范圍.26.(10分)如圖,已知拋物線與x軸交于點A、B,與y軸分別交于點C,其中點,點,且.(1)求拋物線的解析式;(2)點P是線段AB上一動點,過P作交BC于D,當面積最大時,求點P的坐標;(3)點M是位于線段BC上方的拋物線上一點,當恰好等于中的某個角時,求點M的坐標.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)多邊的外角和定理進行選擇.【詳解】解:因為任意多邊形的外角和都等于360°,
所以正十邊形的外角和等于360°,.
故選B.【點睛】本題考查了多邊形外角和定理,關鍵是熟記:多邊形的外角和等于360度.2、C【分析】根據(jù)正方形的性質、折疊的性質、三角形外角的性質、全等三角形的判定與性質、相似三角形的判定與性質、勾股定理對各個選項依次進行判斷、計算,即可得出答案.【詳解】解:正方形ABCD中,,E為AB的中點,,,,
沿DE翻折得到,
,,,,
,,
,
又,
,
,∴,又∵,,∴∠BFD+∠ADE=180°,故①正確;∵,,∴又∵,,∴,∴MB=MF,∴△BFM為等腰三角形;故②正確;,,
∴,∴,又∵,∴,∵,,∴,
∽,故正確;
,,,
∵在和中,,
≌,,
設,則,,
在中,由勾股定理得:,
解得:,∴EG=5,,,∴sin∠EGB=,故⑥正確;
∵,,,∴,又∵,∴∽,∴∴BE=2FM,故④正確;∽,且,設,則,
在中,由勾股定理得:,
解得:舍去或,
,故錯誤;故正確的個數(shù)有5個,故選:C.【點睛】本題主要考查了正方形的性質、折疊的性質、全等三角形的判定與性質、相似三角形的判定與性質、平行線的判定、勾股定理、三角函數(shù)等知識,本題綜合性較強,證明三角形全等和三角形相似是解題的關鍵.3、C【解析】根據(jù)題意可以列出相應的一元二次方程,本題得以解決.【詳解】由題意可得,18(1+x)2=33,故選:C.【點睛】本題考查由實際問題抽象出一元二次方程,解答本題的關鍵是明確題意,列出相應的一元二次方程,這是一道典型的增長率問題.4、A【分析】過點D作DG∥AC,根據(jù)平行線分線段成比例定理,得FC=1DG,AF=3DG,因此得到AF:FC的值.【詳解】解:過點D作DG∥AC,與BF交于點G.
∵AD=4DE,
∴AE=3DE,
∵AD是△ABC的中線,∴∵DG∥AC∴,即AF=3DG,即FC=1DG,∴AF:FC=3DG:1DG=3:1.
故選:A.【點睛】本題考查了平行線分線段成比例定理,正確作出輔助線充分利用對應線段成比例的性質是解題的關鍵.5、C【解析】根據(jù)AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,
∴.
∴△FEC面積是△AEF面積的2倍.
設△AEF面積為x,則△AEC面積為3x,
∵E為AD中點,
∴△DEC面積=△AEC面積=3x.
∴四邊形FCDE面積為1x,
所以S△AFE:S四邊形FCDE為1:1.
故選:C.【點睛】本題考查相似三角形的判定和性質、平行四邊形的性質,解題關鍵是通過線段的比得到三角形面積的關系.6、C【解析】一元二次方程必須滿足四個條件:(1)未知數(shù)的最高次數(shù)是1;(1)二次項系數(shù)不為0;(3)是整式方程;(4)含有一個未知數(shù).由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.【詳解】A、不是方程,故本選項錯誤;B、方程含有兩個未知數(shù),故本選項錯誤;C、符合一元二次方程的定義,故本選項正確;D、不是整式方程,故本選項錯誤.故選:C.【點睛】本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是1.7、D【解析】利用一元二次方程的定義判斷即可.【詳解】A、=3不是整式方程,不符合題意;B、方程整理得:2x+1=0,是一元一次方程,不符合題意;C、ax2+bx+c=0沒有條件a≠0,不一定是一元二次方程,不符合題意;D、3(x+1)2=2(x+1)是一元二次方程,符合題意,故選:D.【點睛】此題考查了一元二次方程的定義,熟練掌握一元二次方程的定義是解本題的關鍵.8、B【分析】運用配方法把一般式化為頂點式即可.【詳解】解:==故選:B【點睛】本題考查的是二次函數(shù)的三種形式,正確運用配方法把一般式化為頂點式是解題的關鍵.9、D【分析】先設D(a,b),得出CO=-a,CD=AB=b,k=ab,再根據(jù)△BCE的面積是6,得出BC×OE=12,最后根據(jù)AB∥OE,BC?EO=AB?CO,求得ab的值即可.【詳解】設D(a,b),則CO=﹣a,CD=AB=b,∵矩形ABCD的頂點D在反比例函數(shù)(x<0)的圖象上,∴k=ab,∵△BCE的面積是6,∴×BC×OE=6,即BC×OE=12,∵AB∥OE,∴,即BC?EO=AB?CO,∴12=b×(﹣a),即ab=﹣12,∴k=﹣12,故選D.考點:反比例函數(shù)系數(shù)k的幾何意義;矩形的性質;平行線分線段成比例;數(shù)形結合.10、D【分析】利用待定系數(shù)法求出k,即可根據(jù)反比例函數(shù)的性質進行判斷.【詳解】解:∵反比例函數(shù)的圖象經(jīng)過點(3,2),∴k=2×3=6,∴,∴圖象在一、三象限,在每個象限y隨x的增大而減小,故A,B,C錯誤,∴點不在此函數(shù)的圖象上,選項D正確;故選:D.【點睛】本題考查反比例函數(shù)圖象上的點的特征,教育的關鍵是熟練掌握基本知識,屬于中考??碱}型.二、填空題(每小題3分,共24分)11、1【分析】先根據(jù)一元二次方程根的定義得到,則可變形為,再根據(jù)根與系數(shù)的關系得到,,然后利用整體代入的方法計算代數(shù)式的值.【詳解】是方程的實數(shù)根,,,,,是方程的兩實數(shù)根,,,.故答案為1.【點睛】考查了根與系數(shù)的關系:若,是一元二次方程的兩根時,,.12、1【分析】(1)根據(jù),求出扇形弧長,即圓錐底面周長;(2)根據(jù),即,求圓錐底面半徑.【詳解】該圓錐的底面半徑=故答案為:1.【點睛】圓錐的側面展開圖是扇形,解題關鍵是理解扇形弧長就是圓錐底面周長.13、【分析】連接OB、OC,如圖,由圓周角定理可得∠BOC的度數(shù),然后根據(jù)弧長公式即可求出半徑.【詳解】解:連接OB、OC,如圖,∵,∴∠BOC=90°,∵的長是,∴,解得:.故答案為:.【點睛】本題考查了圓周角定理和弧長公式,屬于基本題型,熟練掌握上述基本知識是解答的關鍵.14、0或﹣1【分析】根據(jù)題意把原點(0,0)代入解析式,得出關于m的方程,然后解方程即可.【詳解】∵函數(shù)經(jīng)過原點,∴m(m+1)=0,∴m=0或m=﹣1,故答案為0或﹣1.【點睛】本題考查二次函數(shù)圖象上點的坐標特征,解題的關鍵是知道函數(shù)圖象上的點滿足函數(shù)解析式.15、5【分析】如圖,作于.利用勾股定理求出,再利用四點共圓證明△EFG是等腰直角三角形,從而可得FG的長,再利用勾股定理在中求出CG,由即可解決問題.【詳解】解:如圖,作于.四邊形是正方形,,,,,,,,,,,在中,,,,,,四點共圓,,,∴在中,,∴在中,,,故答案為:.【點睛】本題考查正方形的性質、等腰直角三角形性質及判定、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考填空題中的壓軸題.16、5.1.【解析】試題分析:根據(jù)題意可知:BE=3m,DE=9m,△ABE∽△CDE,則,即,解得:CD=5.1m.點睛:本題注意考查的就是三角形相似實際應用的題目,難度在中等.在利用三角形相似,我們一般都是用來測量較高物體或無法直接測量的物體的高度,解決這種題目的時候,我們首先要找到有哪兩個三角形相似,然后根據(jù)相似三角形的邊成比例得出位置物體的高度.17、①④【分析】①按照圓的內(nèi)接三角形的定義判斷即可,三頂點都在一個圓周上的三角形,叫做這個圓周的內(nèi)接三角形;②利用垂徑定理得到弧長之間的關系即可;③設OP與DE交于點M,利用垂徑定理可得DE⊥OP,DE=2ME,再利用直角三角形中斜邊長大于直角邊,找到PE與與ME的關系,進一步可以得到DE與PE的關系;④根據(jù),即可得到∠DAP=∠PAE,則AP平分∠BAC.【詳解】解:①點A、D、E三點均在⊙O上,所以△ADE是⊙O的內(nèi)接三角形,此項正確;②∵DE⊥DE交⊙O于點P∴并不能證明與、關系,∴不正確;③設OP與DE交于點M∵DE⊥DE交⊙O于點P∴DE⊥OP,ME=DE(垂徑定理)∴△PME是直角三角形∴ME<PE∴<PE∴DE<2PE故此項錯誤.④∵(已證)∴∠DAP=∠PAE(同弧所對的圓周角相等)∴AP平分∠BAC.故此項正確.故正確的序號為:①④【點睛】本題考查了圓中內(nèi)接三角形定義、垂徑定理與圓周角定理的應用,熟練掌握定理是解決此題的關鍵.18、1.【解析】×==1,故答案為1.三、解答題(共66分)19、(1)證明見解析;(2)78°.【分析】(1)因為,所以有,又因為,所以有,得到;(2)利用等腰三角形ABE內(nèi)角和定理,求得∠BAE=50°,即∠FAG=50°,又因為第一問證的三角形全等,得到,從而算出∠FGC【詳解】(1)(2)【點睛】本題主要考查全等三角形證明與性質,等腰三角形性質,旋轉性質等知識點,比較簡單,基礎知識扎實是解題關鍵20、,.【分析】根據(jù)因式分解法即可求解.【詳解】解:∴x-1=0或2x-1=0解得,.【點睛】此題主要考查一元二次方程的求解,解題的關鍵是熟知因式分解法的應用.21、(1)矩形的長為12米,寬為6米;(2)面積不能為120平方米,理由見解析【分析】(1)設垂直于墻的一邊長為x米,則矩形的另一邊長為(30﹣2x)米,根據(jù)面積為72米2列出方程,求解即可;(2)根據(jù)題意列出方程,用根的判別式判斷方程根的情況即可.【詳解】解:(1)設垂直于墻的一邊長為x米,則x(30﹣2x)=72,解方程得:x1=3,x2=12.當x=3時,長=30﹣2×3=24>18,故舍去,所以x=12.答:矩形的長為12米,寬為6米;(2)假設面積可以為120平方米,則x(30﹣2x)=120,整理得即x2﹣15x+60=0,△=b2﹣4ac=152﹣4×60=﹣15<0,方程無實數(shù)解,故面積不能為120平方米.【點睛】此題主要考查一元二次方程的應用,解題的關鍵是根據(jù)題意列出方程求解.22、(1)y=x2﹣2x﹣3,點A、B的坐標分別為:(﹣1,0)、(3,0);(2)存在,點P(1+,﹣);(3)故S有最大值為,此時點P(,﹣).【分析】(1)根據(jù)題意得到函數(shù)的對稱軸為:x=﹣=1,解出b=﹣2,即可求解;(2)四邊形POP′C為菱形,則yP=﹣OC=﹣,即可求解;(3)過點P作PH∥y軸交BC于點P,由點B、C的坐標得到直線BC的表達式,設點P(x,x2﹣2x﹣3),則點H(x,x﹣3),再根據(jù)ABPC的面積S=S△ABC+S△BCP即可求解.【詳解】(1)函數(shù)的對稱軸為:x=﹣=1,解得:b=﹣2,∴y=x2﹣2x+c,再將點C(0,﹣3)代入得到c=-3,,∴拋物線的表達式為:y=x2﹣2x﹣3,令y=0,則x=﹣1或3,故點A、B的坐標分別為:(﹣1,0)、(3,0);(2)存在,理由:如圖1,四邊形POP′C為菱形,則yP=﹣OC=﹣,即y=x2﹣2x﹣3=﹣,解得:x=1(舍去負值),故點P(1+,﹣);(3)過點P作PH∥y軸交BC于點P,由點B、C的坐標得到直線BC的表達式為:y=x﹣3,設點P(x,x2﹣2x﹣3),則點H(x,x﹣3),ABPC的面積S=S△ABC+S△BCP=×AB×OC+×PH×OB=×4×3+×3×(x﹣3﹣x2+2x+3)=﹣x2+x+6,=∵-<0,∴當x=時,S有最大值為,此時點P(,﹣).【點睛】此題是一道二次函數(shù)的綜合題,考查待定系數(shù)法求函數(shù)解析式,圖象與坐標軸的交點,翻折的性質,菱形的性質,利用函數(shù)解析式確定最大值,(3)是此題的難點,利用分割法求四邊形的面積是解題的關鍵.23、(1)詳見解析;(2);(1)的長分別為或1.【分析】(1)由比例中項知,據(jù)此可證得,再證明可得答案;(2)先證,結合,得,從而知,據(jù)此可得,由(1)得,據(jù)此知,求得;(1)分和兩種情況分別求解可得.【詳解】(1)證明:∵是和的比例中項∴∵∴∴∵∴∵∴∴∴(2)解:∵與互相垂直∴∵∴∴由(1)得∴∴∴∵,,∴∴由(1)得∴∴∴∵∴∴(1)∵,又,由(1)得∴當與以點、、為頂點所組成的三角形相似時1),如圖∴由(2)得:2),如圖過點作,垂足為點由(1)得∴∴又設,則,,又∴,解得∴綜上所述,的長分別為或1.【點睛】本題考查了相似三角形的判定定理,利用三角形相似以及相關的等量關系來求解MN和DE的長.24、不必封上人行道【分析】過C點作CG⊥AB交AB于G.求需不需要將人行道封上實際上就是比較AB與BE的長短,已知BD,DF的長度,那么AB的長度也就求出來了,現(xiàn)在只需要知道BE的長度即可,有BF的長,ED的長,缺少的是DF的長,根據(jù)“背水坡CD的坡度i=1:2,壩高CF為2m”DF是很容易求出的,這樣有了CG的長,在△ACG中求出AG的長度,這樣就求出AB的長度,有了BE的長,就可以判斷出是不是需要封上人行道了.【詳解】過C點作CG⊥AB交AB于G.在Rt△CDF中,水坡CD的坡度i=2:1,即tan∠CDF=2,∵CF=2,∴DF=1.∴BF=BD+DF=12+1=13.∴CG=13,在Rt△ACG中,∵∠ACG=30°,∴AG=CG·tan30°=13×=7.5m∴AB=AG+BG=7.5+2=9.5m,BE=12m,AB<BE,∴不必封上人行道.【點睛】本題考查俯角、仰角的定義,要求學生能借助俯角、仰角構造直角三角形并結合圖形利用三角函數(shù)解直角三角形.25、(1)見解析;(2)【分析】(1)由題意可得出,繼而可證明△BPQ∽△BAC,從而證明結論;(2)由題意得出QP`⊥AC,分三種情況
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025浙江寧波余姚市姚東自來水有限公司招聘8人筆試歷年參考題庫附帶答案詳解
- 2025廣西建工集團面向集團公司內(nèi)部選拔中層管理人員3人筆試歷年參考題庫附帶答案詳解
- 2025年度河南鋼鐵集團招聘大學生筆試歷年參考題庫附帶答案詳解
- 2025年中國信達江西分公司招聘筆試歷年參考題庫附帶答案詳解
- 新員入職培訓制度
- 培訓庫如何建立管理制度
- 培訓機構加班制度
- 外部培訓轉訓管理制度
- 培訓店長工資制度
- 培訓學校教練員規(guī)章制度
- 管理人員應懂財務知識
- ISO9001-2015質量管理體系版標準
- 翻建房屋四鄰協(xié)議書范本
- 輸煤棧橋彩鋼板更換施工方案
- PRP注射治療膝關節(jié)炎
- 江西省景德鎮(zhèn)市2024-2025學年七年級上學期期中地理試卷(含答案)
- 財務經(jīng)理年終總結2024
- 2024年職教高考《機械制圖》考試題庫
- 開發(fā)區(qū)蒸汽管道工程施工組織設計
- 廣西南寧市江南區(qū)維羅中學2025屆數(shù)學九上期末統(tǒng)考試題含解析
- 史詩鑒賞:《水滸傳》與《西游記》比較分析
評論
0/150
提交評論