版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第二十三章三角函數(shù)的圖像與性質(zhì)思維導(dǎo)圖知識(shí)要點(diǎn)知識(shí)要點(diǎn)1.正弦、余弦、正切函數(shù)的圖像與性質(zhì)(k∈Z)
函數(shù)性質(zhì)y=sinxy=cosxy=tanx定義域RR
圖像值域[-1,1][-1,1]R對(duì)稱性對(duì)稱軸:
對(duì)稱中心:(kπ,0)(k∈Z)對(duì)稱軸:x=kπ(k∈Z);對(duì)稱中心:
對(duì)稱中心:
周期2π2ππ單調(diào)性單調(diào)增區(qū)間:?jiǎn)握{(diào)減區(qū)間:?jiǎn)握{(diào)增區(qū)間:[2kπ-π,2kπ](k∈Z)單調(diào)減區(qū)間:
[2kπ,2kπ+π](k∈Z)單調(diào)增區(qū)間:
奇偶性奇函數(shù)偶函數(shù)奇函數(shù)2.“五點(diǎn)法”作圖(1)y=sinx的圖像在[0,2π]上的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)為(0,0),,(π,0),,(2π,0).(2)y=cosx的圖像在[0,2π]上的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)為(0,1),,(π,-1),,(2π,1).3.函數(shù)y=Asin(ωx+φ)的特征若函數(shù)y=Asin(ωx+φ)[A>0,ω>0,x∈(-∞,+∞)]表示一個(gè)振動(dòng)量,則A叫做振幅,叫做周期,叫做頻率,ωx+φ叫做相位,φ叫做初相.4.y=Asin(ωx+φ)的圖像變換(1)若先平移再伸縮,則平移的單位|φ|.(2)若先伸縮再平移,則平移的單位.5.函數(shù)y=asinx+bcosx可化成正弦型函數(shù)y=Asin(ωx+φ)的形式y(tǒng)=asinx+bcosx=,其中tanθ=,常見(jiàn)形式是a∶b=1∶1(∶),a∶b=1∶,a∶b=3∶4.典例解析典例解析【例1】辨析感悟:對(duì)三角函數(shù)的圖像與性質(zhì)理解.(1)由sin(30°+120°)=sin30°知,120°是正弦函數(shù)y=sinx(x∈R)的一個(gè)周期.()(2)函數(shù)y=是奇函數(shù).()(3)函數(shù)y=sinx的對(duì)稱軸方程為x=2kπ+(k∈Z).()(4)存在x∈R,使得2sinx=3.()【變式訓(xùn)練1】函數(shù)sinα=,求a的取值范圍【例2】求函數(shù)y=cos2x+sinx-1,x∈[-π,0]的最大值與最小值.【變式訓(xùn)練2】求函數(shù)y=cos2x-sinx,x∈[0,π]的最大值與最小值.【例3】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0)的部分圖像如圖所示,則ω=________.【變式訓(xùn)練3】已知函數(shù)f(x)=Asin(wx+φ)在一個(gè)周期內(nèi)的一個(gè)最高點(diǎn)為,一個(gè)最低點(diǎn)為,則w=_______,φ=________.【例4】已知f(x)=cos(ωx+φ)的最小正周期為π,且(1)求ω和φ的值;(2)作出函數(shù)f(x)在[0,π]上的圖像.【變式訓(xùn)練4】函數(shù)f(x)=sin(2x+φ)(0<φ<π),圖像的一個(gè)對(duì)稱中心為.求:(1)φ的值;(2)f(x)的增區(qū)間.【例5】已知函數(shù)y=Asin(ωx+φ)的周期為π,且圖像上有一個(gè)最低點(diǎn)為M.求f(x)的解析式.【變式訓(xùn)練5】已知函數(shù)f(x)=Asin(wx+φ)(A>0,w>0,|φ|<π)的最小正周期為4π,且圖像有一個(gè)最低點(diǎn)為.求f(x)的解析式.【例6】將函數(shù)y=cos2x的圖像怎樣平移可以得到函數(shù)y=cos的圖像?【思路點(diǎn)撥】利用左“加”右“減”的平移規(guī)律.【變式訓(xùn)練6】函數(shù)y=的圖像通過(guò)向右平移個(gè)單位,得到另一個(gè)函數(shù)圖像,求平移后函數(shù)的解析式.【例7】已知函數(shù)f(x)=sin2x-cos2x.求f(x)的最小正周期和對(duì)稱軸方程.【變式訓(xùn)練7】已知函數(shù)f(x)=.求f(x)的最小正周期和最大值.高考鏈接高考鏈接1.函數(shù)y=的圖像是()2.函數(shù)y=的最小正周期是()A.B.πC.2πD.4π3.把函數(shù)y=的圖像向右平移,得到的圖像所對(duì)應(yīng)的函數(shù)是()A.y=B.y=C.y=D.y=4.(四川省2018年對(duì)口升學(xué)考試試題)在△ABC中,內(nèi)角A,B,C所對(duì)的對(duì)邊分別為a,b,c.(1)設(shè)△ABC的面積為S,證明:S=;(2)已知△ABC的面積是1.記u=a2+b2-abcosC.證明:u≥.同步精練同步精練選擇題1.將函數(shù)f(x)=的圖像向左平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)g(x)的圖像,則g(x)的解析式為()A.g(x)=cos2xB.g(x)=cos2x-2C.g(x)=D.g(x)=2.函數(shù)f(x)=2cos2x+1是()A.最小正周期為2π的奇函數(shù)B.最小正周期為2π的偶函數(shù)C.最小正周期為π的奇函數(shù)D.最小正周期為π的偶函數(shù)3.函數(shù)y=cos2x的圖像的一個(gè)對(duì)稱軸是()A.x=B.x=C.x=D.x=4.函數(shù)y=的一個(gè)單調(diào)增區(qū)間為()A.B.C.D.5.下列函數(shù)中周期為π且為偶函數(shù)的是()A.y=B.y=C.y=D.y=6.已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),則“f(x)是奇函數(shù)”是“φ=”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件填空題7.要得到函數(shù)y=的圖像,只需將函數(shù)y=的圖像向_______平移________個(gè)單位.8.函數(shù)y=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0)在閉區(qū)間[-π,0]上的圖像如圖所示,則ω=_______.9.函數(shù)f(x)=2sin22x的最小正周期為_(kāi)_______.10.函數(shù)f(x)=的定義域?yàn)椋獯痤}11.求函數(shù)y=的單調(diào)區(qū)間.12.函數(shù)y=sin2x+2sin2x-3cos2x.求:(1)最小正周期;(2)當(dāng)x取何值時(shí),f(x)取得最值,最值為多少?第二十三章三角函數(shù)的圖像與性質(zhì)思維導(dǎo)圖知識(shí)要點(diǎn)知識(shí)要點(diǎn)1.正弦、余弦、正切函數(shù)的圖像與性質(zhì)(k∈Z)
函數(shù)性質(zhì)y=sinxy=cosxy=tanx定義域RR
圖像值域[-1,1][-1,1]R對(duì)稱性對(duì)稱軸:
對(duì)稱中心:(kπ,0)(k∈Z)對(duì)稱軸:x=kπ(k∈Z);對(duì)稱中心:
對(duì)稱中心:
周期2π2ππ單調(diào)性單調(diào)增區(qū)間:?jiǎn)握{(diào)減區(qū)間:?jiǎn)握{(diào)增區(qū)間:[2kπ-π,2kπ](k∈Z)單調(diào)減區(qū)間:
[2kπ,2kπ+π](k∈Z)單調(diào)增區(qū)間:
奇偶性奇函數(shù)偶函數(shù)奇函數(shù)2.“五點(diǎn)法”作圖(1)y=sinx的圖像在[0,2π]上的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)為(0,0),,(π,0),,(2π,0).(2)y=cosx的圖像在[0,2π]上的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)為(0,1),,(π,-1),,(2π,1).3.函數(shù)y=Asin(ωx+φ)的特征若函數(shù)y=Asin(ωx+φ)[A>0,ω>0,x∈(-∞,+∞)]表示一個(gè)振動(dòng)量,則A叫做振幅,叫做周期,叫做頻率,ωx+φ叫做相位,φ叫做初相.4.y=Asin(ωx+φ)的圖像變換(1)若先平移再伸縮,則平移的單位|φ|.(2)若先伸縮再平移,則平移的單位.5.函數(shù)y=asinx+bcosx可化成正弦型函數(shù)y=Asin(ωx+φ)的形式y(tǒng)=asinx+bcosx=,其中tanθ=,常見(jiàn)形式是a∶b=1∶1(∶),a∶b=1∶,a∶b=3∶4.典例解析典例解析【例1】辨析感悟:對(duì)三角函數(shù)的圖像與性質(zhì)理解.(1)由sin(30°+120°)=sin30°知,120°是正弦函數(shù)y=sinx(x∈R)的一個(gè)周期.(×)(2)函數(shù)y=是奇函數(shù).(×)(3)函數(shù)y=sinx的對(duì)稱軸方程為x=2kπ+(k∈Z).(×)(4)存在x∈R,使得2sinx=3.(×)【思路點(diǎn)撥】周期函數(shù)定義中注意“x”的任意性;函數(shù)y=sinx與y=cosx的對(duì)稱軸分別是經(jīng)過(guò)其圖像的最高點(diǎn)或最低點(diǎn)且平行于y軸的直線;函數(shù)y=sinx與y=cosx的最大值為1,最小值為-1.【變式訓(xùn)練1】函數(shù)sinα=,求a的取值范圍解:∵sinα∈[-1,1],∴-1≤≤1?-3≤a≤1,∴a的取值范圍為[-3,1].【例2】求函數(shù)y=cos2x+sinx-1,x∈[-π,0]的最大值與最小值.【思路點(diǎn)撥】先用二倍角公式把原函數(shù)轉(zhuǎn)化為關(guān)于sinx的函數(shù),再利用二次函數(shù)知識(shí)求解.答案:解:函數(shù)變形為y=-2sin2x+sinx,設(shè)t=sinx,x∈[-π,0],∴t∈[-1,0],則函數(shù)變形為f(t)=-2t2+t,由二次函數(shù)圖像的性質(zhì)易知,f(t)min=f(-1)=-3,f(t)max=f(0)=0.【變式訓(xùn)練2】求函數(shù)y=cos2x-sinx,x∈[0,π]的最大值與最小值.解:∵y=cos2x-sinx=1-sin2x-sinx=-sin2x-sinx+1,且x∈[0,π],∴sinx∈[0,1],∴由二次函數(shù)的圖像的性質(zhì)可知,當(dāng)sinx=0時(shí),ymax=1,當(dāng)sinx=1時(shí),ymin=-1.【例3】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0)的部分圖像如圖所示,則ω=________.思路點(diǎn)撥】先由點(diǎn)和點(diǎn)求出周期,再代入一個(gè)點(diǎn)的坐標(biāo)求φ.由圖像可知函數(shù)的四分之三周期為=,T=3π,ω==【變式訓(xùn)練3】已知函數(shù)f(x)=Asin(wx+φ)在一個(gè)周期內(nèi)的一個(gè)最高點(diǎn)為,一個(gè)最低點(diǎn)為,則w=____1____,φ=________.【提示】?T=2π?w=1,又2sin=2?φ=【例4】已知f(x)=cos(ωx+φ)的最小正周期為π,且(1)求ω和φ的值;(2)作出函數(shù)f(x)在[0,π]上的圖像.【思路點(diǎn)撥】ω可由周期公式T=求出,再由求出φ.答案:解:(1)周期T==π,∴ω=2,∵,且<φ<0,∴φ=【例4】已知f(x)=cos(ωx+φ)的最小正周期為π,且(1)求ω和φ的值;(2)作出函數(shù)f(x)在[0,π]上的圖像.答案:解:(2),列表如下:
0πx0πf(x)10-10答案:圖像如圖所示:【變式訓(xùn)練4】函數(shù)f(x)=sin(2x+φ)(0<φ<π),圖像的一個(gè)對(duì)稱中心為.求:(1)φ的值;(2)f(x)的增區(qū)間.解:(1)由2x+φ=kπ(k∈Z)?x=,∵一個(gè)對(duì)稱中心為,∴=(0<φ<π)?φ=(2)由(1)知,解析式為f(x)=,-+2kπ≤2x+≤+2kπ(k∈Z)?+kπ≤x≤+kπ(k∈Z),增區(qū)間為(k∈Z).【例5】已知函數(shù)y=Asin(ωx+φ)的周期為π,且圖像上有一個(gè)最低點(diǎn)為M.求f(x)的解析式.【思路點(diǎn)撥】ω可由周期公式T=求出,由最低點(diǎn)為M,易知A=3,再代入M點(diǎn)的坐標(biāo)可求出φ.答案:解:(1)由=π,得ω=2.由最低點(diǎn)為M,得A=3.又2×+φ=+2kπ(k∈Z),0<φ<,∴φ=.∴f(x)=.【變式訓(xùn)練5】已知函數(shù)f(x)=Asin(wx+φ)(A>0,w>0,|φ|<π)的最小正周期為4π,且圖像有一個(gè)最低點(diǎn)為.求f(x)的解析式.解:=4π?ω=,∴f(x)=Asin,又最低點(diǎn)為,∴A=2,-2=2sin,|φ|<π?φ=,f(x)=2sin【例6】將函數(shù)y=cos2x的圖像怎樣平移可以得到函數(shù)y=cos的圖像?【思路點(diǎn)撥】利用左“加”右“減”的平移規(guī)律.答案:解:y==,∴要由y=cos2x的圖像得到y(tǒng)=的圖像,需要對(duì)x減去,即需要將y=cos2x的圖像向右平移個(gè)單位.【變式訓(xùn)練6】函數(shù)y=的圖像通過(guò)向右平移個(gè)單位,得到另一個(gè)函數(shù)圖像,求平移后函數(shù)的解析式.解:將函數(shù)y=3sin的圖像通過(guò)向右平移個(gè)單位后,函數(shù)的解析式變?yōu)閥=【例7】已知函數(shù)f(x)=sin2x-cos2x.求f(x)的最小正周期和對(duì)稱軸方程.【思路點(diǎn)撥】a∶b型正弦型函數(shù)的應(yīng)用.答案:解:(1)f(x)=sin2x-==,因此,f(x)的最小正周期為π.由2x-=+kπ,得對(duì)稱軸方程為x=,k∈Z.【變式訓(xùn)練7】已知函數(shù)f(x)=.求f(x)的最小正周期和最大值.解:(1)由題意f(x)==cos2x+sinxcosx-sin2x+sinxcosx+1=cos2x+sin2x+1=+1,由此可得T==π,f(x)max=3.高考鏈接高考鏈接1.函數(shù)y=的圖像是(B)【提示】最大值為2,最小正周期為T(mén)=4π.2.函數(shù)y=的最小正周期是(D)A.B.πC.2πD.4π【提示】化為正弦型y=,∴T=4π.3.把函數(shù)y=的圖像向右平移,得到的圖像所對(duì)應(yīng)的函數(shù)是(C)A.y=B.y=C.y=D.y=【提示】y=cos4.(四川省2018年對(duì)口升學(xué)考試試題)在△ABC中,內(nèi)角A,B,C所對(duì)的對(duì)邊分別為a,b,c.(1)設(shè)△ABC的面積為S,證明:S=;(2)已知△ABC的面積是1.記u=a2+b2-abcosC.證明:u≥.解:(1)在△ABC中過(guò)點(diǎn)A作ADBC于D,在Rt△ADC中,|AD|=|AC|·sinC,∴S=|BC||AD|=|BC||AC|·sinC=absinC.解:(2)由題意有absinC=1,∴u-=a2+b2-abcosC-2=a2+b2-abcosC-×1=a2+b2-abcosC-absinC=a2+b2-ab(cosC+sinC)=a2+b2-≥2ab-2ab=∵≤1,∴2ab-≥0,∴u≥.同步精練同步精練選擇題1.將函數(shù)f(x)=的圖像向左平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)g(x)的圖像,則g(x)的解析式為(A)A.g(x)=cos2xB.g(x)=cos2x-2C.g(x)=D.g(x)=【提示】f(x)=f(x)=cos2f(x)=cos2x-1+1=cos2x.2.函數(shù)f(x)=2cos2x+1是(D)A.最小正周期為2π的奇函數(shù)B.最小正周期為2π的偶函數(shù)C.最小正周期為π的奇函數(shù)D.最小正周期為π的偶函數(shù)【提示】2cos2x+1=(2cos2x-1)+2=cos2x+2.3.函數(shù)y=cos2x的圖像的一個(gè)對(duì)稱軸是(D)A.x=B.x=C.x=D.x=【提示】令2x=kπ,則x=,k=1時(shí),x=.4.函數(shù)y=的一個(gè)單調(diào)增區(qū)間為(B)A.B.C.D.【提示】由2kπ-≤x-≤2kπ+(k∈Z),解得2kπ-≤x≤2kπ+(k∈Z).因此,函數(shù)y=的單調(diào)增區(qū)間為(k∈Z).5.下列函數(shù)中周期為π且為偶函數(shù)的是(A)A.y=B.y=C.y=D.y=【提示】y==-cos2x為偶函數(shù),且最小正周期是π.6.已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),則“f(x)是奇函數(shù)”是“φ=”的(B)A.充分不必要條件
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 藍(lán)色幾何形狀多邊形背景微立體年中工作總結(jié)匯報(bào)
- 2025年宋慶齡幼兒園工作人員公開(kāi)招聘?jìng)淇碱}庫(kù)及完整答案詳解一套
- 2025年國(guó)有企業(yè)招聘工作人員備考題庫(kù)及一套參考答案詳解
- 2026年春學(xué)期語(yǔ)言中心課程助教招聘?jìng)淇碱}庫(kù)及答案詳解參考
- 2025年大唐(內(nèi)蒙古)能源開(kāi)發(fā)有限公司招聘若干人(錫盟)備考題庫(kù)及一套答案詳解
- 2025年吉林大學(xué)材料科學(xué)與工程學(xué)院人才派遣(Ⅱ類)人員招聘?jìng)淇碱}庫(kù)完整參考答案詳解
- 家電維修空調(diào)故障試卷及答案
- 2025年浙江工商大學(xué)杭州商學(xué)院公開(kāi)招聘教學(xué)科研管理崗(教學(xué)秘書(shū))備考題庫(kù)及參考答案詳解1套
- 洛陽(yáng)市青少年體育訓(xùn)練中心2025年引進(jìn)緊缺人才工作實(shí)施備考題庫(kù)參考答案詳解
- 2025年上海戲劇學(xué)院公開(kāi)招聘工作人員23人備考題庫(kù)及參考答案詳解一套
- 六年級(jí)下冊(cè)英語(yǔ)書(shū)湘少版單詞表
- 2025中國(guó)電信校園招聘易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- AI與智慧圖書(shū)館雙向賦能
- 《中藥的現(xiàn)代化》課件
- 生物專業(yè)英語(yǔ)翻譯-蔣悟生
- 高速鐵路客運(yùn)規(guī)章(第2版)課件 項(xiàng)目五 高速鐵路旅客運(yùn)輸服務(wù)管理
- 基礎(chǔ)醫(yī)學(xué)概論期末考試試卷
- 自愿離婚協(xié)議書(shū)標(biāo)準(zhǔn)樣本(八篇)
- 食品營(yíng)養(yǎng)學(xué)(暨南大學(xué))智慧樹(shù)知到期末考試答案章節(jié)答案2024年暨南大學(xué)
- 重慶市兩江新區(qū)2022-2023學(xué)年五年級(jí)下學(xué)期期末數(shù)學(xué)試題
- 閨蜜測(cè)試卷試題
評(píng)論
0/150
提交評(píng)論