版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
河北省廣宗縣2025屆數(shù)學(xué)九上期末經(jīng)典試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在中,是直徑,點是上一點,點是弧的中點,于點,過點的切線交的延長線于點,連接,分別交,于點.連接,關(guān)于下列結(jié)論:①;②;③點是的外心,其中正確結(jié)論是()A.①② B.①③ C.②③ D.①②③2.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④3.如圖,將RtABC繞直角項點C順時針旋轉(zhuǎn)90°,得到A'B'C,連接AA',若∠1=20°,則∠B的度數(shù)是()A.70° B.65° C.60° D.55°4.如圖,點在反比例函數(shù)的圖象上,過點的直線與軸,軸分別交于點,,且,的面積為,則的值為()A. B. C. D.5.在平面直角坐標(biāo)系中,把拋物線y=2x2繞原點旋轉(zhuǎn)180°,再向右平移1個單位,向下平移2個單位,所得的拋物線的函數(shù)表達式為()A.y=2(x﹣1)2﹣2 B.y=2(x+1)2﹣2C.y=﹣2(x﹣1)2﹣2 D.y=﹣2(x+1)2﹣26.如圖,AB∥CD,E,F(xiàn)分別為AC,BD的中點,若AB=5,CD=3,則EF的長是()A.4 B.3 C.2 D.17.把分式中的、都擴大倍,則分式的值()A.?dāng)U大倍 B.?dāng)U大倍 C.不變 D.縮小倍8.若兩個相似三角形的周長之比是1:4,那么這兩個三角形的面積之比是()A.1:4 B.1:2 C.1:16 D.1:89.某路口的交通信號燈每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當(dāng)小明到達該路口時,遇到紅燈的概率是()A. B. C. D.110.在一個不透明的口袋中裝有個完全相同的小球,把它們分別標(biāo)號為,從中隨機摸出一個小球,其標(biāo)號小于的概率為()A. B. C. D.11.若反比例函數(shù)的圖象在每一條曲線上都隨的增大而增大,則的取值范圍是()A. B. C. D.12.如圖,⊙O的弦CD與直徑AB交于點P,PB=1cm,AP=5cm,∠APC=30°,則弦CD的長為()A.4cm B.5cm C.cm D.cm二、填空題(每題4分,共24分)13.如圖,將Rt△ABC繞點A逆時針旋轉(zhuǎn)40°,得到Rt△AB′C′,使AB′恰好經(jīng)過點C,連接BB′,則∠BAC′的度數(shù)為_____°.14.為了對1000件某品牌襯衣進行抽檢,統(tǒng)計合格襯衣的件數(shù),在相同條件下,經(jīng)過大量的重復(fù)抽檢,發(fā)現(xiàn)一件合格襯衣的頻率穩(wěn)定在常數(shù)0.98附近,由此可估計這1000件中不合格的襯衣約為__________件.15.如圖,內(nèi)接于,則的半徑為__________.16.已知:,且y≠4,那么=______.17.已知袋中有若干個小球,它們除顏色外其它都相同,其中只有2個紅球,若隨機從中摸出一個,摸到紅球的概率是,則袋中小球的總個數(shù)是_____18.一個圓錐的側(cè)面展開圖是半徑為8的半圓,則該圓錐的全面積是______________.三、解答題(共78分)19.(8分)如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,∠CAD=∠ABC.判斷直線AD與⊙O的位置關(guān)系,并說明理由.20.(8分)用適當(dāng)?shù)姆椒ń庀铝幸辉畏匠蹋海?);(2).21.(8分)如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DE⊥BC于點E.(1)試判斷DE與⊙O的位置關(guān)系,并說明理由;(2)過點D作DF⊥AB于點F,若BE=3,DF=3,求圖中陰影部分的面積.22.(10分)如圖,在平面直角坐標(biāo)系中,拋物線的頂點坐標(biāo)為,與軸交于點,與軸交于點,.(1)求二次函數(shù)的表達式;(2)過點作平行于軸,交拋物線于點,點為拋物線上的一點(點在上方),作平行于軸交于點,當(dāng)點在何位置時,四邊形的面積最大?并求出最大面積.23.(10分)如圖,拋物線y=ax2+bx﹣經(jīng)過點A(1,0)和點B(5,0),與y軸交于點C.(1)求此拋物線的解析式;(2)以點A為圓心,作與直線BC相切的⊙A,求⊙A的半徑;(3)在直線BC上方的拋物線上任取一點P,連接PB,PC,請問:△PBC的面積是否存在最大值?若存在,求出這個最大值的此時點P的坐標(biāo);若不存在,請說明理由.24.(10分)關(guān)于的一元二次方程有兩個不相等的實數(shù)根.(1)求的取值范圍;(2)若滿足,求的值.25.(12分)把函數(shù)C1:y=ax2﹣2ax﹣3a(a≠0)的圖象繞點P(m,0)旋轉(zhuǎn)180°,得到新函數(shù)C2的圖象,我們稱C2是C1關(guān)于點P的相關(guān)函數(shù).C2的圖象的對稱軸與x軸交點坐標(biāo)為(t,0).(1)填空:t的值為(用含m的代數(shù)式表示)(2)若a=﹣1,當(dāng)≤x≤t時,函數(shù)C1的最大值為y1,最小值為y2,且y1﹣y2=1,求C2的解析式;(3)當(dāng)m=0時,C2的圖象與x軸相交于A,B兩點(點A在點B的右側(cè)).與y軸相交于點D.把線段AD原點O逆時針旋轉(zhuǎn)90°,得到它的對應(yīng)線段A′D′,若線A′D′與C2的圖象有公共點,結(jié)合函數(shù)圖象,求a的取值范圍.26.計算:|2﹣|+()﹣1+﹣2cos45°
參考答案一、選擇題(每題4分,共48分)1、C【分析】由于與不一定相等,根據(jù)圓周角定理可知①錯誤;連接OD,利用切線的性質(zhì),可得出∠GPD=∠GDP,利用等角對等邊可得出GP=GD,可知②正確;先由垂徑定理得到A為的中點,再由C為的中點,得到,根據(jù)等弧所對的圓周角相等可得出∠CAP=∠ACP,利用等角對等邊可得出AP=CP,又AB為直徑得到∠ACQ為直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P為直角三角形ACQ斜邊上的中點,即為直角三角形ACQ的外心,可知③正確;【詳解】∵在⊙O中,AB是直徑,點D是⊙O上一點,點C是弧AD的中點,∴=≠,∴∠BAD≠∠ABC,故①錯誤;連接OD,則OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90,∠EPA+∠EAP=∠EAP+∠GPD=90,∴∠GPD=∠GDP;∴GP=GD,故②正確;∵弦CF⊥AB于點E,∴A為的中點,即,又∵C為的中點,∴,∴,∴∠CAP=∠ACP,∴AP=CP.∵AB為圓O的直徑,∴∠ACQ=90,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P為Rt△ACQ斜邊AQ的中點,∴P為Rt△ACQ的外心,故③正確;故選C.【點睛】此題是圓的綜合題,其中涉及到切線的性質(zhì),圓周角定理,垂徑定理,圓心角、弧、弦的關(guān)系定理,相似三角形的判定與性質(zhì),以及三角形的外接圓與圓心,平行線的判定,熟練掌握性質(zhì)及定理是解決本題的關(guān)鍵.2、B【解析】由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質(zhì)的運用,相似三角形的判定及性質(zhì)的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質(zhì)的運用,解答時根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長度是關(guān)鍵.3、B【分析】根據(jù)圖形旋轉(zhuǎn)的性質(zhì)得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,從而得∠AA′C=45°,結(jié)合∠1=20°,即可求解.【詳解】∵將RtABC繞直角項點C順時針旋轉(zhuǎn)90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故選B.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),等腰三角形和直角三角形的性質(zhì),掌握等腰三角形和直角三角形的性質(zhì)定理,是解題的關(guān)鍵.4、D【分析】過點C作CD⊥x軸交于點D,連接OC,則CD∥OB,得AO=OD,CD=2OB,進而得的面積為4,即可得到答案.【詳解】過點C作CD⊥x軸交于點D,連接OC,則CD∥OB,∵,∴AO=OD,∴OB是?ADC的中位線,∴CD=2OB,∵的面積為,∴的面積為4,∵點在反比例函數(shù)的圖象上,∴k=2×4=8,故選D.【點睛】本題主要考查反比例函數(shù)比例系數(shù)k的幾何意義,添加輔助線,求出的面積,是解題的關(guān)鍵.5、C【分析】拋物線y=1x1繞原點旋轉(zhuǎn)180°,即拋物線上的點(x,y)變?yōu)椋?x,-y),代入可得拋物線方程,然后根據(jù)左加右減的規(guī)律即可得出結(jié)論.【詳解】解:∵把拋物線y=1x1繞原點旋轉(zhuǎn)180°,∴新拋物線解析式為:y=﹣1x1,∵再向右平移1個單位,向下平移1個單位,∴平移后拋物線的解析式為y=﹣1(x﹣1)1﹣1.故選:C.【點睛】本題考查了拋物線的平移變換規(guī)律,旋轉(zhuǎn)變換規(guī)律,掌握拋物線的平移和旋轉(zhuǎn)變換規(guī)律是解題的關(guān)鍵.6、D【詳解】連接DE并延長交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE.∵E是AC中點,∴DE=EH.∴△DCE≌△HAE(AAS).∴DE=HE,DC=AH.∵F是BD中點,∴EF是△DHB的中位線.∴EF=BH.∴BH=AB﹣AH=AB﹣DC=2.∴EF=2.故選D.7、C【分析】依據(jù)分式的基本性質(zhì)進行計算即可.【詳解】解:∵a、b都擴大3倍,∴∴分式的值不變.故選:C.【點睛】本題主要考查的是分式的基本性質(zhì),熟練掌握分式的基本性質(zhì)是解題的關(guān)鍵.8、C【分析】根據(jù)相似三角形的面積的比等于相似比的平方可得答案.【詳解】解:∵相似三角形的周長之比是1:4,∴對應(yīng)邊之比為1:4,∴這兩個三角形的面積之比是:1:16,故選C.【點睛】此題主要考查了相似三角形的性質(zhì),關(guān)鍵是掌握相似三角形的周長的比等于相似比;相似三角形的面積的比等于相似比的平方.9、C【分析】根據(jù)隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)所有可能出現(xiàn)的結(jié)果數(shù),據(jù)此用紅燈亮的時間除以以上三種燈亮的總時間,即可得出答案.【詳解】解:∵每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,∴紅燈的概率是:.故答案為:C.【點睛】本題考查的知識點是簡單事件的概率問題,熟記概率公式是解題的關(guān)鍵.10、C【分析】直接利用概率公式求解即可求得答案.【詳解】解:∵在一個不透明的口袋中裝有5個完全相同的小球,把它們分別標(biāo)號為1,2,3,4,5,
其中小于的3個,∴從中隨機摸出一個小球,其標(biāo)號小于4的概率為:故選:C.【點睛】此題考查了概率公式的應(yīng)用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.11、B【分析】根據(jù)反比例函數(shù)的性質(zhì),可求k的取值范圍.【詳解】解:∵反比例函數(shù)圖象的每一條曲線上,y都隨x的增大而增大,
∴k?2<0,
∴k<2
故選B.【點睛】本題考查了反比例函數(shù)的性質(zhì),熟練掌握當(dāng)k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減??;當(dāng)k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.12、D【分析】作OH⊥CD于H,連接OC,如圖,先計算出OB=3,OP=2,再在Rt△OPH中利用含30度的直角三角形三邊的關(guān)系得到OH=1,則可根據(jù)勾股定理計算出CH,然后根據(jù)垂徑定理得到CH=DH,從而得到CD的長.【詳解】解:作OH⊥CD于H,連接OC,如圖,∵PB=1,AP=5,∴OB=3,OP=2,在Rt△OPH中,∵∠OPH=30°,∴OH=OP=1,在Rt△OCH中,CH=,∵OH⊥CD,∴CH=DH=,∴CD=2CH=.故選:D.【點睛】本題考查了含30度角的直角三角形的性質(zhì)、勾股定理以及垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。?、填空題(每題4分,共24分)13、1【分析】由圖形選擇的性質(zhì),∠BAC=∠B′AC′則問題可解.【詳解】解:∵Rt△ABC繞點A逆時針旋轉(zhuǎn)40°,得到Rt△AB′C′,使AB′恰好經(jīng)過點C,∴∠BAC=∠B′AC′=40°,∴∠BAC′=∠BAC+∠B′AC′=1°,故答案為:1.【點睛】本題考查了圖形旋轉(zhuǎn)的性質(zhì),解答關(guān)鍵是應(yīng)用旋轉(zhuǎn)過程中旋轉(zhuǎn)角不變的性質(zhì).14、1【分析】用總件數(shù)乘以不合格襯衣的頻率即可得出答案.【詳解】這1000件中不合格的襯衣約為:(件);
故答案為:1.【點睛】本題考查了利用頻率估計概率:大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.15、2【分析】連接OA、OB,求出∠AOB=得到△ABC是等邊三角形,即可得到半徑OA=AB=2.【詳解】連接OA、OB,∵,∴∠AOB=,∵OA=OB,∴△ABC是等邊三角形,∴OA=AB=2,故答案為:2.【點睛】此題考查圓周角定理,同弧所對的圓周角等于圓心角的一半.16、【分析】由分式的性質(zhì)和等比性質(zhì),即可得到答案.【詳解】解:∵,∴,由等比性質(zhì),得:;故答案為:.【點睛】本題考查了比例的性質(zhì),以及分式的性質(zhì),解題的關(guān)鍵是熟練掌握等比性質(zhì).17、8個【解析】根據(jù)概率公式結(jié)合取出紅球的概率即可求出袋中小球的總個數(shù).【詳解】袋中小球的總個數(shù)是:2÷=8(個).故答案為8個.【點睛】本題考查了概率公式,根據(jù)概率公式算出球的總個數(shù)是解題的關(guān)鍵.18、48π【分析】首先利用圓的面積公式即可求得側(cè)面積,利用弧長公式求得圓錐的底面半徑,得到底面面積,據(jù)此即可求得圓錐的全面積.【詳解】解:側(cè)面積是:,底面圓半徑為:,底面積,故圓錐的全面積是:,故答案為:48π【點睛】本題考查了圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.三、解答題(共78分)19、直線AD與⊙O相切,理由見解析【分析】先由AB是⊙O的直徑可得∠ACB=90°,進而得出∠ABC+∠BAC=90°;接下來再由∠CAD=∠ABC,運用等量代換可得∠CAD+∠BAC=90°,再運用切線的判定即可求解.【詳解】直線AD與⊙O相切.∵AB是⊙O的直徑,∴∠ACB=90°.∴∠ABC+∠BAC=90°.又∵∠CAD=∠ABC,∴∠CAD+∠BAC=90°.∴直線AD與⊙O相切【點睛】本題考查了圓周角定理,直線與圓的位置關(guān)系.半圓(或直徑)所對圓周角是直角,90°的圓周角所對的弦是直徑;經(jīng)過半徑外端點并且垂直于這條半徑的直線是圓的切線.20、(1);(2)【分析】(1)利用提取公因式的方法因式分解,然后解一元二次方程即可;(2)利用平方差公式分解因式,然后解一元二次方程即可.【詳解】(1)原方程變形為,或,解得;(2)原方程變形為:,即,或,解得.【點睛】本題主要考查解一元二次方程,掌握因式分解法是解題的關(guān)鍵.21、(1)DE與⊙O相切,理由見解析;(2)陰影部分的面積為2π﹣.【分析】(1)直接利用角平分線的定義結(jié)合平行線的判定與性質(zhì)得出∠DEB=∠EDO=90°,進而得出答案;(2)利用勾股定理結(jié)合扇形面積求法分別分析得出答案.【詳解】(1)DE與⊙O相切,理由:連接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分線交⊙O于點D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE與⊙O相切;(2)∵∠ABC的平分線交⊙O于點D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF=,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=,∴DO=2,則FO=,故圖中陰影部分的面積為:.【點睛】此題主要考查了切線的判定方法以及扇形面積求法等知識,正確得出DO的長是解題關(guān)鍵.22、(1);(2)點的坐標(biāo)為時,【分析】(1)根據(jù)題目已知條件,可以由頂點坐標(biāo)及A點坐標(biāo)先求出二次函數(shù)頂點式,進而轉(zhuǎn)化為一般式即可;(2)根據(jù)題意,先求出直線AB的解析式,再設(shè)出點P和D坐標(biāo),進而先得出四邊形的面積表達式,即可求得面積最大值.【詳解】(1)∵頂點坐標(biāo)為,∴設(shè)拋物線解析式為,∵拋物線與軸交于點,∴,∴,∴,∴;(2)當(dāng)時,,∴,,∴,,設(shè)直線的解析式為,∵,,∴,,∴直線的解析式為.設(shè),∴,∴.∵,∴,∴,∵,∴,∵中,對稱軸為,∴當(dāng),即點的坐標(biāo)為時,.【點睛】本題主要考查了二次函數(shù)解析式及四邊形面積的最值,熟練掌握解析式的求法以及最值的求法是解決本題的關(guān)鍵,在求最值的時候注意將對稱軸與自變量的取值范圍進行對比,進而判斷是在何處取最大值.23、(1)y=﹣+2x﹣;(2);(3)存在最大值,此時P點坐標(biāo)(,).【分析】(1)將A、B兩點坐標(biāo)分別代入拋物線解析式,可求得待定系數(shù)a和b,即可確定拋物線解析式;(2)因為圓的切線垂直于過切點的半徑,所以過A作AD⊥BC于點D,則AD為⊙A的半徑,由條件可證明△ABD∽△CBO,根據(jù)拋物線解析式求出C點坐標(biāo),根據(jù)勾股定理求出BC的長,再求出AB的長,利用相似三角形的性質(zhì)即兩個三角形相似,對應(yīng)線段成比例,可求得AD的長,即為⊙A的半徑;(3)先由B,C點坐標(biāo)求出直線BC解析式,然后過P作PQ∥y軸,交直線BC于點Q,交x軸于點E,因為P在拋物線上,P,Q點橫坐標(biāo)相同,所以可設(shè)出P、Q點的坐標(biāo),并把PQ的長度表示出來,進而表示出△PQC和△PQB的面積,兩者相加就是△PBC的面積,再利用二次函數(shù)的性質(zhì)討論其最大值,容易求得P點坐標(biāo).【詳解】解:(1)∵拋物線y=ax2+bx﹣經(jīng)過點A(1,0)和點B(5,0),∴把A、B兩點坐標(biāo)代入可得:,解得:,∴拋物線解析式為y=﹣+2x﹣;(2)過A作AD⊥BC于點D,如圖1:因為圓的切線垂直于過切點的半徑,所以AD為⊙A的半徑,由(1)可知C(0,﹣),且A(1,0),B(5,0),∴OB=5,AB=OB﹣OA=4,OC=,在Rt△OBC中,由勾股定理可得:BC===,∵∠ADB=∠BOC=90°,∠ABD=∠CBO,∴△ABD∽△CBO,∴,即,解得AD=,即⊙A的半徑為;(3)∵C(0,﹣),∴設(shè)直線BC解析式為y=kx﹣,把B點坐標(biāo)(5,0)代入可求得k=,∴直線BC的解析式為y=x﹣,過P作PQ∥y軸,交直線BC于點Q,交x軸于點E,如圖2,因為P在拋物線上,Q在直線BC上,P,Q兩點橫坐標(biāo)相同,所以設(shè)P(x,﹣+2x﹣),則Q(x,x﹣),∴PQ=(﹣+2x﹣)﹣(x﹣)=﹣+x=﹣+,∴S△PBC=S△PCQ+S△PBQ=PQ?OE+PQ?BE=PQ(OE+BE)=PQ?OB=PQ=×[﹣+]=,∵<0,∴當(dāng)x=時,S△PBC有最大值,把x=代入﹣+2x﹣,求出P點縱坐標(biāo)為,∴△PBC的面積存在最大值,此時P點坐標(biāo)(,).【點睛】本題考查1.二次函數(shù)的綜合應(yīng)用;2.切線的性質(zhì);3.相似三角形的判定和性質(zhì);4.用待定系數(shù)法確定解析式,綜合性較強,利用數(shù)形結(jié)合思想解題是關(guān)鍵.24、(1);(2)a=-1【分析】(1)方程有兩個不相等的實數(shù)根,即為方程根的判別式大于0,由此可得關(guān)于a的不等式,解不等式即可求出結(jié)果;(2)根據(jù)一元二次方程的根與系數(shù)的關(guān)系可得關(guān)于a的方程,解方程即可求出a的值,再結(jié)合(1)的結(jié)論取舍即可.【詳解】解:(1)∵方程有兩個不相等的實數(shù)根,∴,解得:,∴的取值范圍為:;(2)∵是方程的兩個根,∴,,∵,∴,∴,解得:,∵,∴.【點睛】本題考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025江蘇淮安市洪澤區(qū)中醫(yī)院招聘合同制專業(yè)技術(shù)人員2人(第二批)備考考試試題及答案解析
- 團結(jié)部門的活動策劃方案
- 2025四川綿陽市中心醫(yī)院合同制工勤人員招聘3人參考考試試題及答案解析
- 2025福建福州市園開港灣經(jīng)貿(mào)有限公司招聘1人參考筆試題庫附答案解析
- 2025江蘇南通市蘇錫通科技產(chǎn)業(yè)園區(qū)招商服務(wù)有限公司第二批次招聘延期模擬筆試試題及答案解析
- 2025湖南郴州市第四人民醫(yī)院招聘(引進)高層次專業(yè)技術(shù)人才24人參考考試試題及答案解析
- 深度解析(2026)《GBT 25728-2024糧油機械 氣壓磨粉機》
- 2025人民網(wǎng)寧夏分公司招聘媒介顧問2人參考筆試題庫附答案解析
- 2026年河北張家口經(jīng)開區(qū)編辦青年就業(yè)見習(xí)崗位招聘備考筆試試題及答案解析
- 2025青海海南州同德縣人民醫(yī)院招聘消防專職人員1人參考筆試題庫附答案解析
- 2025年云南省人民檢察院聘用制書記員招聘(22人)筆試考試備考試題及答案解析
- 2024年電大法學(xué)??菩姓ㄅc行政訴訟法網(wǎng)考題庫
- 起重機改造合同范本
- 2025中國醫(yī)藥健康產(chǎn)業(yè)股份有限公司總部有關(guān)領(lǐng)導(dǎo)人員選聘筆試歷年參考題庫附帶答案詳解
- 2026年企業(yè)財務(wù)共享中心建設(shè)方案
- 2025年科學(xué)方法與論文寫作考試題及答案
- 衛(wèi)生院2025年度全面工作總結(jié)
- 船舶航次風(fēng)險評估管理制度(3篇)
- 遼寧省名校聯(lián)盟2025年高三12月份聯(lián)合考試英語試卷(含答案詳解)
- 顱腦解剖教學(xué)課件
- 基于遙感技術(shù)的湘西土家族苗族自治州石漠化動態(tài)監(jiān)測與深度解析
評論
0/150
提交評論