湖北武漢武昌區(qū)2021-2022學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第1頁(yè)
湖北武漢武昌區(qū)2021-2022學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第2頁(yè)
湖北武漢武昌區(qū)2021-2022學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第3頁(yè)
湖北武漢武昌區(qū)2021-2022學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第4頁(yè)
湖北武漢武昌區(qū)2021-2022學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件2.復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件4.命題:的否定為A. B.C. D.5.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,書中有如下問(wèn)題:“今有勾六步,股八步,問(wèn)勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長(zhǎng)分別為6步和8步,問(wèn)其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自內(nèi)切圓的概率是()A. B. C. D.6.已知函數(shù),若對(duì)于任意的,函數(shù)在內(nèi)都有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.7.已知,且,則的值為()A. B. C. D.8.為雙曲線的左焦點(diǎn),過(guò)點(diǎn)的直線與圓交于、兩點(diǎn),(在、之間)與雙曲線在第一象限的交點(diǎn)為,為坐標(biāo)原點(diǎn),若,且,則雙曲線的離心率為()A. B. C. D.9.已知拋物線,過(guò)拋物線上兩點(diǎn)分別作拋物線的兩條切線為兩切線的交點(diǎn)為坐標(biāo)原點(diǎn)若,則直線與的斜率之積為()A. B. C. D.10.要得到函數(shù)的圖象,只需將函數(shù)的圖象上所有點(diǎn)的()A.橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),再向左平移個(gè)單位長(zhǎng)度B.橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),再向右平移個(gè)單位長(zhǎng)度C.橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向左平移個(gè)單位長(zhǎng)度D.橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向右平移個(gè)單位長(zhǎng)度11.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件12.若,則下列關(guān)系式正確的個(gè)數(shù)是()①②③④A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足對(duì)任意,,則數(shù)列的通項(xiàng)公式__________.14.已知等比數(shù)列滿足公比,為其前項(xiàng)和,,,構(gòu)成等差數(shù)列,則_______.15.函數(shù)f(x)=x2﹣xlnx的圖象在x=1處的切線方程為_____.16.根據(jù)如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)記無(wú)窮數(shù)列的前項(xiàng)中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項(xiàng)和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.18.(12分)已知函數(shù),.(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)判斷函數(shù)的零點(diǎn)個(gè)數(shù).19.(12分)在銳角三角形中,角的對(duì)邊分別為.已知成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)若的面積為求的值.20.(12分)如圖,在四棱錐中,底面是矩形,是的中點(diǎn),平面,且,.()求與平面所成角的正弦.()求二面角的余弦值.21.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若的解集包含,求的取值范圍.22.(10分)已知數(shù)列的前項(xiàng)和為,.(1)求數(shù)列的通項(xiàng)公式;(2)若,為數(shù)列的前項(xiàng)和.求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

首先利用二倍角正切公式由,求出,再根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:∵,∴可解得或,∴“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,二倍角正切公式的應(yīng)用是解決本題的關(guān)鍵,屬于基礎(chǔ)題.2.B【解析】

設(shè),則,可得,即可得到,進(jìn)而找到對(duì)應(yīng)的點(diǎn)所在象限.【詳解】設(shè),則,,,所以復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)為,在第二象限.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在象限,考查復(fù)數(shù)的模,考查運(yùn)算能力.3.C【解析】分析:從兩個(gè)方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當(dāng)三角形是鈍角三角形時(shí),也推不出成立,從而必要性也不滿足,從而選出正確的結(jié)果.詳解:由題意可得,在中,因?yàn)椋?,因?yàn)椋?,,結(jié)合三角形內(nèi)角的條件,故A,B同為銳角,因?yàn)?,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點(diǎn)睛:該題考查的是有關(guān)充分必要條件的判斷問(wèn)題,在解題的過(guò)程中,需要用到不等式的等價(jià)轉(zhuǎn)化,余弦的和角公式,誘導(dǎo)公式等,需要明確對(duì)應(yīng)此類問(wèn)題的解題步驟,以及三角形形狀對(duì)應(yīng)的特征.4.C【解析】

命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.5.C【解析】

利用直角三角形三邊與內(nèi)切圓半徑的關(guān)系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計(jì)算公式,即可求解.【詳解】由題意,直角三角形的斜邊長(zhǎng)為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【點(diǎn)睛】本題主要考查了面積比的幾何概型的概率的計(jì)算問(wèn)題,其中解答中熟練應(yīng)用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.6.D【解析】

將原題等價(jià)轉(zhuǎn)化為方程在內(nèi)都有兩個(gè)不同的根,先求導(dǎo),可判斷時(shí),,是增函數(shù);當(dāng)時(shí),,是減函數(shù).因此,再令,求導(dǎo)得,結(jié)合韋達(dá)定理可知,要滿足題意,只能是存在零點(diǎn),使得在有解,通過(guò)導(dǎo)數(shù)可判斷當(dāng)時(shí),在上是增函數(shù);當(dāng)時(shí),在上是減函數(shù);則應(yīng)滿足,再結(jié)合,構(gòu)造函數(shù),求導(dǎo)即可求解;【詳解】函數(shù)在內(nèi)都有兩個(gè)不同的零點(diǎn),等價(jià)于方程在內(nèi)都有兩個(gè)不同的根.,所以當(dāng)時(shí),,是增函數(shù);當(dāng)時(shí),,是減函數(shù).因此.設(shè),,若在無(wú)解,則在上是單調(diào)函數(shù),不合題意;所以在有解,且易知只能有一個(gè)解.設(shè)其解為,當(dāng)時(shí),在上是增函數(shù);當(dāng)時(shí),在上是減函數(shù).因?yàn)椋匠淘趦?nèi)有兩個(gè)不同的根,所以,且.由,即,解得.由,即,所以.因?yàn)?,所以,代入,?設(shè),,所以在上是增函數(shù),而,由可得,得.由在上是增函數(shù),得.綜上所述,故選:D.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)個(gè)數(shù)求解參數(shù)取值范圍問(wèn)題,構(gòu)造函數(shù)法,導(dǎo)數(shù)法研究函數(shù)增減性與最值關(guān)系,轉(zhuǎn)化與化歸能力,屬于難題7.A【解析】

由及得到、,進(jìn)一步得到,再利用兩角差的正切公式計(jì)算即可.【詳解】因?yàn)椋裕?,所以,,所?故選:A.【點(diǎn)睛】本題考查三角函數(shù)誘導(dǎo)公式、二倍角公式以及兩角差的正切公式的應(yīng)用,考查學(xué)生的基本計(jì)算能力,是一道基礎(chǔ)題.8.D【解析】

過(guò)點(diǎn)作,可得出點(diǎn)為的中點(diǎn),由可求得的值,可計(jì)算出的值,進(jìn)而可得出,結(jié)合可知點(diǎn)為的中點(diǎn),可得出,利用勾股定理求得(為雙曲線的右焦點(diǎn)),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過(guò)點(diǎn)作,設(shè)該雙曲線的右焦點(diǎn)為,連接.,.,,,為的中點(diǎn),,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點(diǎn)睛】本題考查雙曲線離心率的求解,解題時(shí)要充分分析圖形的形狀,考查推理能力與計(jì)算能力,屬于中等題.9.A【解析】

設(shè)出A,B的坐標(biāo),利用導(dǎo)數(shù)求出過(guò)A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點(diǎn)睛:(1)本題主要考查拋物線的簡(jiǎn)單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學(xué)生對(duì)這些基礎(chǔ)知識(shí)的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點(diǎn),先設(shè)A,B,,再求切線PA,PB方程,求點(diǎn)P坐標(biāo),再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點(diǎn)P的坐標(biāo),計(jì)算量就大一些.10.C【解析】

根據(jù)三角函數(shù)圖像的變換與參數(shù)之間的關(guān)系,即可容易求得.【詳解】為得到,將橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),故可得;再將向左平移個(gè)單位長(zhǎng)度,故可得.故選:C.【點(diǎn)睛】本題考查三角函數(shù)圖像的平移,涉及誘導(dǎo)公式的使用,屬基礎(chǔ)題.11.A【解析】

,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結(jié)論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了線面和面面垂直的判定與性質(zhì)定理、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力.12.D【解析】

a,b可看成是與和交點(diǎn)的橫坐標(biāo),畫出圖象,數(shù)形結(jié)合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點(diǎn)睛】本題考查利用函數(shù)圖象比較大小,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用累加法求得數(shù)列的通項(xiàng)公式,由此求得的通項(xiàng)公式.【詳解】由題,所以故答案為:【點(diǎn)睛】本小題主要考查累加法求數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.14.0【解析】

利用等差中項(xiàng)以及等比數(shù)列的前項(xiàng)和公式即可求解.【詳解】由,,是等差數(shù)列可知因?yàn)椋?,故答案為?【點(diǎn)睛】本題考查了等差中項(xiàng)的應(yīng)用、等比數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.15.x﹣y=0.【解析】

先將x=1代入函數(shù)式求出切點(diǎn)縱坐標(biāo),然后對(duì)函數(shù)求導(dǎo)數(shù),進(jìn)一步求出切線斜率,最后利用點(diǎn)斜式寫出切線方程.【詳解】由題意得.故切線方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求切線方程的基本方法,利用切點(diǎn)滿足的條件列方程(組)是關(guān)鍵.同時(shí)也考查了學(xué)生的運(yùn)算能力,屬于基礎(chǔ)題.16.【解析】

算法的功能是求的值,根據(jù)輸出的值,分別求出當(dāng)時(shí)和當(dāng)時(shí)的值即可得解.【詳解】解:由程序語(yǔ)句知:算法的功能是求的值,當(dāng)時(shí),,可得:,或(舍去);當(dāng)時(shí),,可得:(舍去).綜上的值為:.故答案為:.【點(diǎn)睛】本題考查了選擇結(jié)構(gòu)的程序語(yǔ)句,根據(jù)語(yǔ)句判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)證明見(jiàn)解析(3)證明見(jiàn)解析【解析】

(1)由是遞增數(shù)列,得,由此能求出的前項(xiàng)和.(2)推導(dǎo)出,,由此能證明的“極差數(shù)列”仍是.(3)證當(dāng)數(shù)列是等差數(shù)列時(shí),設(shè)其公差為,,是一個(gè)單調(diào)遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【詳解】(1)解:∵無(wú)窮數(shù)列的前項(xiàng)中最大值為,最小值為,,,是遞增數(shù)列,∴,∴的前項(xiàng)和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數(shù)列”仍是(3)證明:當(dāng)數(shù)列是等差數(shù)列時(shí),設(shè)其公差為,,根據(jù),的定義,得:,,且兩個(gè)不等式中至少有一個(gè)取等號(hào),當(dāng)時(shí),必有,∴,∴是一個(gè)單調(diào)遞增數(shù)列,∴,,∴,∴,∴是等差數(shù)列,當(dāng)時(shí),則必有,∴,∴是一個(gè)單調(diào)遞減數(shù)列,∴,,∴,∴.∴是等差數(shù)列,當(dāng)時(shí),,∵,中必有一個(gè)為0,根據(jù)上式,一個(gè)為0,為一個(gè)必為0,∴,,∴數(shù)列是常數(shù)數(shù)列,則數(shù)列是等差數(shù)列.綜上,若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【點(diǎn)睛】本小題主要考查新定義數(shù)列的理解和運(yùn)用,考查等差數(shù)列的證明,考查數(shù)列的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.18.(1)(2)答案見(jiàn)解析(3)答案見(jiàn)解析【解析】

(1)設(shè)曲線在點(diǎn),處的切線的斜率為,可求得,,利用直線的點(diǎn)斜式方程即可求得答案;(2)由(Ⅰ)知,,分時(shí),,三類討論,即可求得各種情況下的的單調(diào)區(qū)間為;(3)分與兩類討論,即可判斷函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1),,設(shè)曲線在點(diǎn),處的切線的斜率為,則,又,曲線在點(diǎn),處的切線方程為:,即;(2)由(1)知,,故當(dāng)時(shí),,所以在上單調(diào)遞增;當(dāng)時(shí),,;,,;的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時(shí),同理可得的遞增區(qū)間為,遞減區(qū)間為,;綜上所述,時(shí),單調(diào)遞增為,無(wú)遞減區(qū)間;當(dāng)時(shí),的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時(shí),的遞增區(qū)間為,遞減區(qū)間為,;(3)當(dāng)時(shí),恒成立,所以無(wú)零點(diǎn);當(dāng)時(shí),由,得:,只有一個(gè)零點(diǎn).【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查分類討論思想與推理、運(yùn)算能力,屬于中檔題.19.(1);(2).【解析】

(1)根據(jù)成等差數(shù)列與三角形內(nèi)角和可知,再利用兩角和的正切公式,代入化簡(jiǎn)可得,同理根據(jù)三角形內(nèi)角和與余弦的兩角和公式與等比數(shù)列的性質(zhì)可求得,聯(lián)立即可求解求的值.(2)由(1)可知,再根據(jù)同角三角函數(shù)的關(guān)系與正弦定理可求得,再結(jié)合的面積為利用面積公式求解即可.【詳解】解:成等差數(shù)列,可得而,即,展開化簡(jiǎn)得,因?yàn)?故①又成等比數(shù)列,可得,即,可得聯(lián)立解得(負(fù)的舍去),可得銳角;由可得,由為銳角,解得,因?yàn)闉殇J角,故可得,由正弦定理可得,又的面積為可得,解得.【點(diǎn)睛】本題主要考查了等差等比中項(xiàng)的運(yùn)用以及正切的和差角公式以及同角三角函數(shù)關(guān)系等.同時(shí)也考查了正弦定理與面積公式在解三角形中的運(yùn)用,屬于中檔題.20.(1).(2).【解析】分析:(1)直接建立空間直角坐標(biāo)系,然后求出面的法向量和已知線的向量,再結(jié)合向量的夾角公式求

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論