版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
EUROPEANCENTRALBANK
EUROSYSTEM
RichardAudoly,RoryMcGee,SergioOcampo,GonzaloPaz-Pardo
WorkingPaperSeries
Thelife-cycledynamicsofwealthmobility
No2976
Disclaimer:ThispapershouldnotbereportedasrepresentingtheviewsoftheEuropeanCentralBank(ECB).TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyreflectthoseoftheECB.
ECBWorkingPaperSeriesNo29761
Abstract
Weuse25yearsoftaxrecordsfortheNorwegianpopulationtostudythemobilityofwealthoverpeople’slifetimes.Wefindconsiderablewealthmobilityoverthelifecycle.Tounderstandtheunderlyingmobilitypatterns,wegroupindividualswithsimilarwealthrankhistoriesusingagglomerativehierarchicalclustering,atoolfromstatisticallearning.Themobilitypatternsweelicitprovideevidenceofsegmentedmobility.Over60percentofthepopulationremainsatthetoporbottomofthewealthdistributionthroughouttheirlives.Mobilityisdrivenbytheremaining40percent,whomoveonlywithinthemiddleofthedistribution.Movementsaretiedtodifferentialincometrajectoriesandbusinessactivitiesacrossgroups.Weshowparentalwealthisthekeypredictorofwhoispersistentlyrichorpoor,whilehumancapitalisthemainpredictorofthosewhoriseandfallthroughthemiddleofthedistribution.
JEL:D31,E21,C23,C38,C55
Keywords:wealthdynamics,agglomerativehierarchicalclustering,lifecycle,equalityofopportunity,intergenerationallinks
ECBWorkingPaperSeriesNo29762
Non-technicalsummary
Individualsmoveupordownthewealthdistributionduringtheirlives.Thesemovementsarerelatedtotheeventsandchoicesthatpeopleface,includingtheireducationdecisions,theirlabourmarketincomeandthebusinessactivitiestheyengagein.Althoughanextensiveliteraturehasstudiedthedistributionofwealthandwealthinequality,muchlessisknownabouthowpeopletransitionacrossthewealthdistributionduringtheirlives,i.e.,wealthmobility.
ThispaperstudieswealthmobilityoverthelifecyclebyusingNorwegianadministrativedataoriginatingfromthetaxregistry(1993-2017).Thisdataisexceptionalinaninternationalcontext.NorwayisoneofthefewcountriesinEuropetohaveawealthtax,andasaresultNorwegiantaxauthoritiesmustcollectinformationabouttheassetsandliabilitiesofNorwegianindividuals.Theinformationisparticularlyhighqualitybecause,unlikemostsurveydatasets,itisnotselfreported,butratherobtaineddirectlyfromthirdpartiessuchasfinancialinstitutions.OurdatasetcontainstheuniverseofNorwegianindividuals,theirincomeandwealth,andalsootherdemographicinformation,suchastheireducation,age,andmaritalstatus.
Weusethisdatatoestablishthatmobilityoverthelifecycleissubstantial,butthatitisrarethatindividualsmakeverylargemovementsacrossthewealthdistributionduringtheirlives.Instead,householdsthatarebornwithinthetopofthewealthdistribution(therichest20%)andthebottomofthewealthdistribution(thebottom40%)tendtostaywithinthatrange,withsomerelativelysmallfluctuations.Ontheotherhand,weidentifytwogroupsofindividualsthatarepartofthemiddleclassandsufferreversalsoffortuneduringtheirlifetimes.Oneofthemtendstoriseoverthewealthdistributionastheyage,reflectingrapidwealthaccumulation,whiletheothertendstofalloverthewealthdistribution,reflectingstagnantorevenfallingwealthlevels.Weidentifythesegroupsusingagglomerativehierarchicalclustering,atoolfromstatisticallearning.
ECBWorkingPaperSeriesNo29763
Westudyhowthesedifferentgroupsdifferintermsoftheirhomeownershiprates,portfolios,sourcesofincomeandinheritances.Wefindthatthetopandfallinggroupsaremorelikelytoownbusinessesandtobeself-employed,whiletherisersaremorelikelytobeemployeeswithastarklyrisingincomeprofile.Individualsatthebottomofthedistributionaredifferentfromtherest:theirincomesarepersistentlylower,theyrarelybecomehomeownersanddonotownbusinesses.
Werelatethesefourdistinctgroupswiththeirparentalbackground,educationandothercharacteristicswhicharedeterminedatthestartoftheirworkinglives.Wefindthatindividualsborntoveryrichparentsarealmost30percentagepointsmorelikelytobepartofthegroupthatispersistentlyatthetopoftheirowngeneration’sdistribution,comparedtothoseborntothepoorestparents.Incontrast,thoseborntoparentsatthebottomofthedistributionaremorelikelytobepersistentlypoorthroughouttheirlives.
Forindividualswhoexperienceariseorfallthroughthedistribution,educationisastrongerpredictoroftheirevolutionthanparentalwealth.Highlyeducatedindividualsaremarkedlymorelikelytorisethroughthewealthdistributionastheyage.Bycontrast,evenaftercontrollingfortheirparentalbackground,thosewithoutpost-secondaryeducationarebetween5and10percentagepointsmorelikelytobepartofthefallinggroupthanthosewithatleastundergraduatedegrees.
Ourresultshighlightthatthepositionofanindividualoverthewealthdistributionvariessubstantiallyoverhisorherlifetime,butthatcertaingroups,suchastherichestandpoorest,tendtohaverelativelystablepatterns.Theseresultsarerelevanttounderstandthedistributionalimplicationsofpoliciessuchasthewealthtaxorgovernmentinsurance,butalsohowshocksordevelopmentssuchaschangesintheneutralrateofinterestwillultimatelyaffectthewealthdistributionandhouseholdwelfareinthelongrun.
ECBWorkingPaperSeriesNo29764
1.Introduction
Dorichandpoorpeopleremainthatwaythroughouttheirlives?Isittypicalforpeopletoexperiencereversalsoffortunemovingupordownthewealthdistribution?Ifso,howlargearethereversals,andwhendotheyhappen?Thesemovementsacrossthewealthdistributionreflecttheoutcomesofcriticaleventsandchoicesinpeople’slives,includingtheirhumancapitalaccumulation,earnings,andbusinessactivities.Wealthmobilitythusspeakstotheopportunitiesthatpeopleface.
1
However,despitegrowingevidenceonthedynamicsofwealthconcentrationforthewealthiest,
2
weknowlittleaboutthelife-cycledynamicsofwealthmobilityforthepopulationasawhole.
Ourmaincontributionliesindocumentingwealthmobilityoverthelifecycle.Weconductacomprehensivestudyofthecompletedistributionoflifetimeindividualwealthtrajectories,whichweconstructusing25yearsofadministrativedatafromtheNorwegiantaxregistry(1993–2017).Wefindincreasingwealthmobilityoverthelifecycle,sothatanindividual’sinitialpositioninthewealthdistributionmatterslessastheyage.Onlyone-fourthofindividualsareinthesamequintileofthedistributionafter25years.However,thispopulationtrenddoesnot,byitself,tellusmuchabouttheunderlyinglife-cyclepatternsthatdriveit.Whoisactuallymoving?Andhow?
Toanswerthesequestions,weelicittypicallife-cyclewealthtrajectoriesfromthedistributionofwealthhistoriesusingagglomerativehierarchicalclustering,atoolfromstatisticallearningthatgroupsindividualsbasedontheirfullrealizedtrajectories.Wegroupindividualsintofourmaingroups,whosetypicaltrajectoriesexplainmorethanone-halfofthevariationinwealthhistories.Wealsostudytheheterogeneitywithin
1Lowwealthmobilitycanbeasymptomoflimitedequalityofopportunityandcanexacerbatetheeffectsofhighinequality.Inthecontextofincomeinequality,AlanKrueger,thenChairmanoftheCouncilofEconomicAdvisorsunderPresidentObama,remarkedthat“ifwehadahighdegreeofincomemobilitywewouldbelessconcernedaboutthedegreeofinequalityinanygivenyear”(
Krueger
2012,pg.3)
.
2See
Gomez
(2023)forevidencefromthe
Forbes400listand
Ozkan,Hubmer,Salgado,andHalvorsen
(2023)forevidenceonthetop0.1percentofNorwegianwealthholders
.Quantitativeanalysisoftheoriginsofthewealthiestindividualsdatesbacktoatleastto
Wedgwood
(1929)
.
ECBWorkingPaperSeriesNo29765
thesegroupsbyexploitingthehierarchicalnatureofourclusteringmethodology.
Themobilitypatternsweuncovershowthatincreasingwealthmobilityoverthelifecycleisnotbroad-basedandisnotdrivenbymovementsspanningthewholedistribution.Instead,itcomesfromacombinationoftwolargelyimmobilegroups(60percentofthepopulation)thatstayrelativelyrichandpoor,andtwogroupsthatundergolargetransitionsthatareneverthelesscontainedtothemiddleofthewealthdistribution
.3
Thetwogroupsdrivingincreasingmobilityalongthelifecycleexperienceareversaloffortunesastheyage,withonerisingthroughthedistributionandtheotherfalling.Weinterpretthesepatternsasevidenceofsegmentedwealthmobility:mobilitytakesplaceonlyforsomegroupsofindividualsandwithinasectionofthedistribution.
Further,weestablishhowdifferenteconomicfactors—suchasportfoliocomposition,sourcesofincome,familystructure,andinheritances—relatetothelargegapsinwealthaccumulationbetweengroups.Wefindthat,whilepropertyistheprimaryassetforallgroups,thereareimportantdifferencesinbusinessassetsandprivateequity.Theseassetsareconcentratedinthetopandfallinggroups,whichalignswiththeirhigherratesofself-employment.Notably,risersengageinlessbusinessactivityandinsteadrelyonemploymentincomeastheymoveupthedistribution.Theirlaborincomeishigherthanthatofthefallers,andtheirhouseholdincomesmatchthoseofthetopgroup(thathasalargershareofcapitalincome).Bycontrast,fallershavesimilar,butultimatelylesssuccessful,entrepreneurialactivitiescomparedtothoseatthetop.Theindividualsatthebottomofthedistributionareverydifferentfromtheothers:theirincomesarepersistentlylower,theystayrentersthroughouttheirlives,andtheyrarelyownbusinesses.
Turningtothecompositionofourmaingroups,welookintotheirmost
3DifferencesinrealizedwealthranktrajectoriescorrespondtomeaningfuldifferencesinlevelsreflectingthehighdegreeofwealthinequalityinNorway.Forinstance,thegapatage55betweenthetwogroupsinthemiddleofthedistributionrepresentsadifferenceintheirnetworthofalmost600,000USdollars.
ECBWorkingPaperSeriesNo29766
representativesubgroupsexploitingthehierarchicalnatureofourclusteringalgorithm.Thoserisingmostlydifferinthetimingoftheirmovements,withsubgroupsexperiencingsimilargainsinrelativewealthpositionsbutatdifferentages,apatternwerelatetotheireducationalattainment.Onaverage,therisersareinthe40thpercentileofthewealthdistributionaroundage30andclimbtothe70thpercentilebyage55.Thereissubstantiallymoreheterogeneityintheinternalpatternsofthosefallingthroughthedistribution.Twosubgroupsarecontinuouslyfalling;theoneexperiencingthelargestfallgoesfromthe75thtothe38thpercentilebetweenages30and55,apatternwetietodecliningbusinessperformance.Athirdgroupexperiencesarapidrisebyage45butlaterfallsbackdown;thesemovementscoincidewithhighearlymarriageratesandlatedivorcerates.WeexploretheheterogeneitywithinallmajorgroupsinSection
6
.
Finally,wecontrasttheroleofindividuals’circumstances,includingparentalwealthandeducation,inpredictingfullwealthrankhistories
.4
Wefindanimportantandnonlinearroleforfamilybackground.Individualsborntoparentsatthetopofthewealthdistributionarealmost30percentagepointsmorelikelytobepartofthegroupthatispersistentlyatornearthetopoftheirowngeneration’sdistribution,comparedtothoseborntoparentsatthebottomofthedistribution.Incontrast,thoseborntoparentsatthebottomofthedistributionarenotonlylikelytobepooreratagivenage;theyarealsomorelikelytobepersistentlypoorthroughouttheirlives.
However,parentalwealthplaysamorelimitedroleforindividualswhoexperienceariseorfallthroughthedistribution.Fortheseindividuals,educationisthemainpredictoroftheirevolution.Highlyeducatedindividualsaremarkedlymorelikelyto
risethroughthewealthdistributionastheyage.Bycontrast,evenaftercontrollingfor
4Ourexercisemovesbeyondstandardmeasuresofintergenerationalmobilitythatcomparetherankofdifferentgenerationsatasimilarpointintheirlifecycle,thus,relyingonasnapshotoftheirwealthtrajectorytoinfermobility(see,forexample,
Chettyetal.
2014;
Fagereng,Mogstad,andR?nning
2021)
.Weinsteadaskwhetherindividualcharacteristicscanpredictcompletelife-cyclehistories.
ECBWorkingPaperSeriesNo29767
theirparentalbackground,thosewithoutpost-secondaryeducationarebetween5and10percentagepointsmorelikelytobefallersthanthosewithatleastundergraduatedegrees.Overall,parentalwealthandhumancapitaleachaccountfor40percentoftheexplainedvariationingroupmembership—highlightingtheimportanceofhereditaryadvantageinwealthdynamics(
BeckerandTomes
1979
)
.5
Theseresultsprovideanovelapproachtostudyingintergenerationalmobilityintermsofentirelife-cyclehistories.Wefinddecliningintergenerationalmobilityalongthelifecycle,sothatthewealthranksofindividualsmoveclosertotheirparent’sranksastheyage.Notonlydoesthismirrortheintragenerationalmobilitytrendwedocument,butwefindthatthesameindividualsdrivebothpopulationtrends.Asrisersriseandfallersfall,theirreversalsoffortunedriveincreasingintragenerationalanddecreasingintergenerationalmobility.
Themainmethodologicalcontributionofthepaperistoproposeadata-drivenapproachtosummarizingheterogeneousmobilityinlarge-scaledatasets.Theagglomerativehierarchicalclusteringalgorithmweemployworksbyrecursivelygroupingindividualswithsimilarwealth-rankhistories
.6
Thisprocessresultsinaglobalhierarchyofclustersthatminimizesthedistancebetweenthepathstakenbyindividualsineachgroup,makinguseofthewholevectorofrealizedwealthranks.Crucially,ourmethodologyallowsustocharacterizemobilitypatternswithoutresortingtoasinglesummarystatistic;italsodoesnotrequireustospecifywhichobservablecharacteristicsdeterminethegroupsortorelyonaspecificparametricmodelfortheevolutionofwealth.Tothebestofourknowledge,thisapproachhasnotbeenappliedtothestudyofmobilitypriortothispaper.
5Ourresultsalsocomplementthosein
Huggett,Ventura,andYaron
(2011),whostudylifetime
inequalityusingamodel-drivenapproach.Althoughwefocusonmobility,webothfindimportantrolesforhumancapitalandinitialconditionsincludingtheinitialwealthlevelofindividuals.
6See
Hastie,Tibshirani,andFriedman
(2009,
ch.14)foranintroductiontoclustering;
Borysov,Hannig,
andMarron
(2014),and
Egashira,Yata,andAoshima
(2024)deriveasymptoticpropertiesofhierarchical
clustering.
ECBWorkingPaperSeriesNo29768
Relatedliterature.Weprovidenewevidenceonwealthmobilityalongthelifecycle,notonlymeasuringthedegreeofpersistenceinindividuals’positionsinthewealthdistributionbutalsothewaysinwhichindividualsmovebycharacterizingtheirtypicaltrajectories.Indoingso,wecomplementanextensiveliteratureonthedynamicsofearningsoverthelifecycle(see,forinstance,
Arellano,Blundell,andBonhomme
2017;
DeNardi,Fella,andPaz-Pardo
2020;
Guvenen,Karahan,Ozkan,andSong
2021;and
Guvenen,Kaplan,Song,andWeidner
2022)andacrossgenerations(see,forinstance,
Solon
1992;
Chetty,Hendren,Kline,Saez,andTurner
2014;
Chetty,Grusky,Hell,
Hendren,Manduca,andNarang
2017;and
Halvorsen,Ozkan,andSalgado
2022)
.
Relatedly,
Hurst,Luoh,Stafford,andGale
(1998)studyhowsavingbehaviourdiffers
overadecadebyrace,education,householddemographics,andinitialwealthusingthePanelStudyofIncomeDynamics.We,instead,studymobilitywithwealthtrajectoriesover25yearswithoutconditioningonspecificvariables.
Wealsocontributetotheliteratureonintergenerationalmobilityinwealth(see,forinstance,
CharlesandHurst
2003;
Boserup,Kopczuk,andKreiner
2017;
Adermon,
Lindahl,andWaldenstr?m
2018;and
Fagereng,Mogstad,andR?nning
2021)
.Ourmethodologyallowsustogobeyondcomparingacrossgenerationsatagivenpointintheirlifecyclebyconsideringthefullwealthhistoriesofindividuals.Weshowthatbothparentalbackgroundandtheindividuals’positionsinthewealthdistributionnearthebeginningoftheirwork-lifehavelong-lastingimpactsonthewealthtrajectoriesofindividuals.Intergenerationalmobilitydeclinesoverthelifecycleaschildren’srelativepositionsintheirowngenerationconvergetowardthoseoftheirparents.
Ouranalysisismadepossiblebylongitudinaldatacharacterizingthedistributionof
wealthhistoriescompiledbyStatisticsNorway.Observingindividualsoverlongperiodsoftimeiscrucialforstudyingthenatureofwealthaccumulationandpriorcontributionshaveusedthisdatatoinvestigatetheroleofreturnheterogeneity(
Fagereng,Guiso,
Malacrino,andPistaferri
2020),differencesinsavingbehaviors(
Fagereng,Holm,Moll,
ECBWorkingPaperSeriesNo29769
andNatvik
2019),theimportanceofgiftsandinheritancesforlifetimeresources(
Black,
Devereux,Landaud,andSalvanes
2022),andtherelationshipbetweenwealthand
lifetimeincome(
Black,Devereux,Landaud,andSalvanes
2023).Inrelatedwork,
Ozkan,
Hubmer,Salgado,andHalvorsen
(2023)focusonthedriversofwealthaccumulation
amongthewealthiest0.1percentatage50lookingbackwardattheirlifetimetrajectories.Wecomplementthesepapersbycharacterizingthelife-cyclepathsofindividualsacrosstheentirewealthdistribution,includingthosewithrising,falling,andstablepaths.Ourfindings,therefore,contributetoourunderstandingofwealthinequalityandmobilitybeyondthedynamicsofwealthaccumulationattheverytop.
Theclusteringmethodweemployconstitutesafeasiblewaytostudytrajectoriesoflongitudinaloutcomes,suchasmobility,inlargepaneldatasets.Italsoallowsustodecomposecommonlyusedsummarymeasuresofmobility,suchastheOLScoefficientinarank-rankregression.Similarapproacheshavebeenusedinsociologytosummarizemobilitybetweendiscretestates(
DijkstraandTaris
1995;
McVicarandAnyadike-Danes
2002;
DlouhyandBiemann
2015)
.
Ineconomics,clusteringhasbeenusedtoanalyzesortingandtransitionsinthelabormarket(see,amongothers,
Bonhomme,Lamadon,andManresa
2019;
Gregory,
Menzio,andWiczer
2021;
Humphries
2022;and
Ahn,Hobijn,and?ahin
2023)andto
identifylatentheterogeneity,asin
Lewis,Melcangi,andPilossoph
(2021)
.ManyoftheseapplicationsusevariantsofK-meansclustering,whoseasymptoticpropertiesarederivedin
BonhommeandManresa
(2015)and
Bonhomme,Lamadon,andManresa
(2022)
.Relativetothesemethods,ourapproachprovidesaglobalhierarchyofpartitionsthatfacilitatesstudyingwithinclusterheterogeneitywithoutimposingcomputationalburdensintheanalysisoflargedatasets.Althoughhierarchicalclusteringisourpreferredapproach,weshowinSection
8
thatourmainresultsholdwithK-meansclustering.
ECBWorkingPaperSeriesNo297610
2.Data:apanelofwealthhistoriesfortheNorwegianpopulation
WeemploydatafromtheNorwegiantaxregistrybetween1993and2017anditsassociatedpopulationcharacteristicsfiles.Weareabletolinkthesevariousdatasetsattheindividualandhouseholdlevelsusingunique(anonymized)identifiers.Theresultingdatacontainsinformationonwealth(networth),assets,debt,income,andavarietyofindividualcharacteristics
.7
Wereportmonetaryvaluesin2019USdollars.
ThecoverageandpropertiesoftheNorwegianadministrativedatasetsitapartfromsurveyandadministrativedataavailableinothercountriesandmakesituniquelysuitedtothestudyofwealthmobilityoverthelifecycle.Westartbyhighlightingthekeystrengthsofourdata.
First,Norwayhasrecordedwealthinitstaxreturnssince1993,providinguswithalongpanelwithtwenty-fiveyearsofobservations.Thislongpanelallowsustotrackindividualsoverimportantphasesoftheirlifecycles.Trackingindividualsiscrucialtounderstandmobilityoverlonghorizonsandtodifferentiatethelife-cycletrajectoriesexperiencedbyindividuals,aswedowhenwedocumentthetrajectoriesofwealthmobilityusingourclusteringprocedure.
Second,theNorwegianincomeandwealthtaxrecordscovertheentirepopulation.Wethereforeconstructaccuratemeasuresofanindividual’srankinthewealthdistribution,withincohortsandthepopulationatlarge.Furthermore,thedatacovers
individualsattheverybottomandtopofthedistribution,whoaretypicallydifficultto
7Thequalityanddetailofthisdatahaveprovenusefulinavarietyofstudies.MoreinformationontheNorwegianadministrativewealthdatacanbefoundin
Fagereng,Guiso,Malacrino,andPistaferri
(2020),
Fagereng,Mogstad,andR?nning
(2021),and
Fagereng,Holm,andNatvik
(2021).Additionally,
Blundell,
Graber,andMogstad
(2015)provideadetaileddiscussionofincometaxrecords
.
ECBWorkingPaperSeriesNo297611
captureinsurveydata
.8
Moreover,mostofthecomponentsofincomeandwealtharethird-partyreportedandarenottop-orbottom-coded,eliminatingconcernsaboutmeasurementerrorfromself-reportingandcensoringthatarecommoninsurveydata.
Third,weareabletolinkindividualswithinhouseholdsandacrossgenerations,aswellastotheirdemographicandeducationalinformation.Thiswealthofinformationletsuslinktrajectoriesofwealthmobilitytotheindividualcircumstancesthathelpdeterminethem,suchasparentalbackgroundandeducationalattainment.
2.1.Wealthandassetdata
Weobserveeachindividual’sassets,debt,andnetworth,asreportedintheirwealthtax
return.Theseareindividualreturns,wherethevalueofassetsjointlyownedbyacoupleissplitequallybetweeneachpartner.Wefocusouranalysisonwealthattheindividuallevel,butwealsoreportrobustnessresultsforwealthatthehouseholdlevel.Usingindividualleveldataallowsustoconsiderhowmobilityvarieswithsexaswellastotrackindividualsthroughhouseholdformationanddissolution.InSection
6.4
,weshowthatthesedynamicsarerelatedtothemobilitypatternsofsubgroupsofindividuals.
Wealsoobservethevalueofvariousassetclassesincludedinindividuals’wealthtax
returns.However,thereturnsdonotincludetransactionswithinclasses.Thesinglelargestassetformostindividualsishousing.Weadjusthousingvaluesusingthereportedvaluesin
Fagereng,Holm,andTorstensen
(2020)treatingcondominiumsandother
propertiesseparately.
9
Weaggregateprimaryresidences,secondaryresidencesandleisureproperties,andforeignresidencesintoaproperty-assetclass.Finally,wedefine
8Thisproblemhasledtomethodsthatoversamplethetailsofthedistribution.Thesemethodsareill-suitedtothefocusofourstudy.Forexample,theU.S.PanelStudyofIncomeDynamicsoversampleslowerincomehouseholds(theSurveyofEconomicOpportunityhouseholds),whiletheSurveyofConsumerFinancesoversampleswealthierhouseholds.Researchersoftenresorttoadhocmethodstobuildmoreaccuratemeasuresoftheuppertailofthewealthdistribution,forexample,byaugmentingtheSurveyofConsumerFinanceswiththeForbes400listofthe400richestAmericansorestatetaxdata(see,forexample,
Vermeulen
2016
).
DaviesandShorrocks
(2000)provideanextensivereviewofthesemethods
.
9Wethank
Fagereng,Holm,andTorstensen
forprovidinguswithupdatedadjustmentvaluescoveringoursampleperiod.
ECBWorkingPaperSeriesNo297612
ahomeownershipindicatorexcludingsecondaryandforeignproperties.
Theotherassetclassesincludedinthetaxreturnsarevehicles,public
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 童話館管理制度及流程(3篇)
- 船舶建造技術(shù)管理制度(3篇)
- 2026年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)外墻保溫材料行業(yè)市場(chǎng)競(jìng)爭(zhēng)格局及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 《GA 563-2009警服 春秋執(zhí)勤服》專題研究報(bào)告
- 《GAT 760.4-2008公安信息化標(biāo)準(zhǔn)管理分類與代碼 第4部分:法律文件代碼》專題研究報(bào)告:深度與前瞻應(yīng)用
- 兼職救護(hù)隊(duì)培訓(xùn)課件
- 兼職培訓(xùn)師培訓(xùn)
- 2026年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)報(bào)廢船舶行業(yè)市場(chǎng)運(yùn)行態(tài)勢(shì)與投資戰(zhàn)略咨詢報(bào)告
- 信息保密制度
- 企業(yè)員工獎(jiǎng)懲與激勵(lì)制度
- 石子廠規(guī)范管理制度
- 大數(shù)據(jù)驅(qū)動(dòng)下的塵肺病發(fā)病趨勢(shì)預(yù)測(cè)模型
- 成都2025年四川成都市新津區(qū)招聘衛(wèi)生專業(yè)技術(shù)人才21人筆試歷年參考題庫(kù)附帶答案詳解
- 2026屆廣東省高考英語(yǔ)聽說(shuō)考試備考技巧講義
- 炎德英才大聯(lián)考雅禮中學(xué)2026屆高三月考試卷英語(yǔ)(五)(含答案)
- 2026年經(jīng)營(yíng)人員安全生產(chǎn)責(zé)任制范文
- T-CEPPEA 5002-2019 電力建設(shè)項(xiàng)目工程總承包管理規(guī)范
- 暫緩行政拘留申請(qǐng)書
- 示波器說(shuō)明書
- 談心談話記錄100條范文(6篇)
- 微電影投資合作協(xié)議書
評(píng)論
0/150
提交評(píng)論