2.2.1橢圓的標(biāo)準(zhǔn)方程公開課一等獎?wù)n件省賽課獲獎?wù)n件_第1頁
2.2.1橢圓的標(biāo)準(zhǔn)方程公開課一等獎?wù)n件省賽課獲獎?wù)n件_第2頁
2.2.1橢圓的標(biāo)準(zhǔn)方程公開課一等獎?wù)n件省賽課獲獎?wù)n件_第3頁
2.2.1橢圓的標(biāo)準(zhǔn)方程公開課一等獎?wù)n件省賽課獲獎?wù)n件_第4頁
2.2.1橢圓的標(biāo)準(zhǔn)方程公開課一等獎?wù)n件省賽課獲獎?wù)n件_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2.1橢圓的原則方程學(xué)習(xí)目的1、建立并掌握橢圓的原則方程2、能根據(jù)已知條件求橢圓的原則方程3、能用原則方程判斷曲線與否是橢圓(應(yīng)用)橢圓的定義?焦點?焦距?平面內(nèi)到兩個定點F1,F(xiàn)2的距離的和等于常數(shù)(不不大于F1F2)的點的軌跡——橢圓兩個定點F1,F(xiàn)2——橢圓的焦點兩焦點間的距離——橢圓的焦距復(fù)習(xí)回想貯油罐的橫截面的外輪廓線的形狀像橢圓?橢圓?將一種圓進行均勻壓縮變形后,所得的圖形也像橢圓.問題1:它們是不是數(shù)學(xué)概念上的橢圓?如何來檢查所得曲線是不是橢圓?中國第一顆人造地球

衛(wèi)星“東方紅一號”問題2:如何建立橢圓的方程?Oyxr設(shè)圓上任意一點P(x,y)以圓心O為原點,建立直角坐標(biāo)系兩邊平方,得

1.建系2.設(shè)坐標(biāo)3.列等式4.代坐標(biāo)坐標(biāo)法

5.化簡方程回想:圓方程的推導(dǎo)橢圓方程的建立:環(huán)節(jié)一:建立直角坐標(biāo)系環(huán)節(jié)二:設(shè)動點坐標(biāo)環(huán)節(jié)四:代入坐標(biāo)環(huán)節(jié)五:化簡方程環(huán)節(jié)三:列等式PF1F2設(shè)橢圓的兩個焦點分別為F1,F(xiàn)2,它們之間的距離為2c,橢圓上任意一點P到F1,F(xiàn)2

的距離的和為2a(2a>2c).

以F1,F(xiàn)2所在直線為x軸,線段F1F2的垂直平分線為y軸,建立直角坐標(biāo)系xOy,則F1,F(xiàn)2的坐標(biāo)分別為(-c,0),(c,0).環(huán)節(jié)一:建立直角坐標(biāo)系xyOPF1F2設(shè)橢圓上任意一點P的坐標(biāo)為(x,y),環(huán)節(jié)三:列等式根據(jù)橢圓定義知:PF1+PF2=2a,環(huán)節(jié)四:代入坐標(biāo)即環(huán)節(jié)二:設(shè)動點坐標(biāo)環(huán)節(jié)五:化簡方程兩邊再平方得:a4-2a2cx+c2x2=a2x2-2a2cx+a2c2+a2y2,整頓得:(a2-c2)x2+a2y2=a2(a2-c2).移項得:兩邊平方得:整理得:

因為a2(a2-c2)

≠0,所以兩邊同除以a2(a2-c2)得:又由于a2-c2>0,因此可設(shè)a2-c2=b2(b>0),于是得:yOX問:如何根據(jù)原則方程判斷焦點位置?橢圓的原則方程橢圓的焦點位置可由方程中x2與y2的分母的大小來擬定,焦點在分母大的項所對應(yīng)的坐標(biāo)軸上.鞏固練習(xí)1.已知橢圓的方程為,則a=_____,b=_____,c=_____,焦點坐標(biāo)為_______________,焦距等于_____.543(-4,0),(4,0)82.已知橢圓的方程為,則a=_____,b=_____,c=_____,焦點坐標(biāo)為_______________,焦距等于_____.212(0,-1),(0,1)例1、已知橢圓焦點為F1(0,-6),F(xiàn)2(0,6),且橢圓過點P(2,5),求該橢圓的原則方程.例題分析定義法待定系數(shù)法例2、已知一種貯油罐橫截面的外輪廓線是一種橢圓,它的焦距為2.4m,外輪廓線上的點到兩個焦點的距離和為3m,求這個橢圓的原則方程xOyF1F2P解:以兩個焦點F1,F(xiàn)2所在的直線為x軸,以線段F1F2的垂直平分線為y軸,建立如圖所示平面直角坐標(biāo)系。設(shè)橢圓的原則方程為由題意知:2a=3,2c=2.4,即a=1.5,c=1.2。因此b2=a2-c2=1.52-1.22=0.81,因此橢圓的原則方程為1、方程建立的過程:建立直角坐標(biāo)系設(shè)坐標(biāo)列等式代坐標(biāo)化簡方程總結(jié)2、根據(jù)已知條件求橢圓的原則方程:(1)擬定焦點所在的位置,選擇原則方程的形式;(2)求解a,b的值,寫出橢圓的原則方程.定義圖形方程焦點F(±c,0)F(0,±c)

a,b,c的關(guān)系{P|PF1+PF2=2a,2a>F1F2}12yoFFPxyxo2FPF13、兩種原則方程的比較1.推導(dǎo)焦點在y軸上的橢圓的原則方程;2.教科書P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論